摘要
1985年,H.Strauss在广义多项式的系数和值域同时受约束的情况下给出了最佳同时逼近的一个特征定理。本文在弱得多的条件下用不同方法证明了一个适用性更广的特征定理。
In 1985,H.Strauss gave a characterization theorem of a best simultaneous approxiation with multiple restrictions on the coefficients and ranges. This paper proves by a different ap-proach a similar, but more extensively applicable,characterization under conditions far weaker than that of Strauss's.
出处
《数学杂志》
CSCD
北大核心
1995年第3期279-286,共8页
Journal of Mathematics
关键词
最佳同时逼近
约束系数
约束值域
逼近
多项式
characterization,best simultaneous approximation,restricted coefficients,restricted ranges.