摘要
一个给定的图是否存在用r种颜色的正常P_k着色?称该问题为图的(k,r)路色数问题。已知对于直径为2的图及任意给定的整数r≥3,图的(2,r)路色数问题是NP-完全的。本文给出直径为2的(2,2)路色图的一个好的刻划,并由此给出该问题的一个多项式时间算法,从而解决了以r为参数的直径为2的图的(2,r)路色数问题的计算复杂性分类。
Is there a normal P_k coloring for a given graph with r colors?This problem is calledthe(k,r)path chrematic number problem of graphs. It has been known that for any fixedinteger r≥3 the(2,r)path chromatic number problem for graphs with diameter 2 is NP-complete, This paper gives out a good characterization for(2,2)path chromatic graphswith diameter 2 and a polynomial time algorithm,hence solves the classification of thecomputational complexity for the(2,r)path chromatic number problem of graphs with pa-rameter r.
出处
《数学杂志》
CSCD
北大核心
1995年第4期401-404,共4页
Journal of Mathematics
关键词
图
着色
路色数
直径
平面图
Graph,Cloring,Path Chromatic number.