摘要
设为Euler函数,R.D.Carmichael猜想:对每一正整数x,存在不等于x的正整数y,使得作者给出方程的解的结构,利用这种结构得到探求解的算法以及Carmichael猜想的反例所满足的一些条件,A.Schinzel猜想:对每个偶整数k,方程有无穷多解.作者证明:如果存在无穷多个素数p,使2p-1仍为素数,则Schinzel猜想成立.
Let be Euler' s totient function. R. D. Carmichael conjectured that for everypositive integer x,there exists a positive integer such that The author gave thestructure of the solutions to the equation and an algorithm for searching for the solutionsto Using the structure of the solutions, derived some known conditions for a counter-example to Carmichael's conjecture. A. Schinzel conjectured that for every even integer k,there existinfinitely many solutions to the equation The author showed that if there areinfinitely many prime pairs P and q=2p- 1,then Schinzel's conjecture is true.
出处
《四川大学学报(自然科学版)》
CAS
CSCD
1995年第6期628-631,共4页
Journal of Sichuan University(Natural Science Edition)