摘要
本文证明:(NMA)点可数型的可数中(亚)紧空间是离散次中(亚)可膨的。设τ是一强不可达基数,我们定义了τ—NMA.并证明了(τNMA)次正规、h(X)<τ的空间是<τ—集态次正规的。
We prove that : (NMA)Every Countable meso - (meta- )compact space of point-countable type is discretely submeso-(submeta) expandable . Also,in this paper .we introduce a variation of NMA,i. e. τ-NMA, where r is a strongly inaccessible cardinal and prove that; (τ-NMA)every subnormal space of h(X)<τ is <τ-collectionwise sub-normal.
出处
《苏州大学学报(自然科学版)》
CAS
1995年第1期23-30,共8页
Journal of Soochow University(Natural Science Edition)
关键词
正规测试公理
点可数型
可数仿紧空间
NM A, point -countable type .submeso- (submeta- ) expandable, <τ - col lectionwise subnormal,strictly quasi -paracompact.