摘要
Doolittle对矩阵分解为在矩阵的各阶主子矩阵为非奇异的条件下,A可唯一的分解为一个下三角分块矩阵与一个上三角分块矩阵的乘积形式,本文给出若矩阵A的左上主子矩阵有一个r阶主子矩阵为非奇异的,则A可分解为一个下三角分块矩阵与一个上三角分块矩阵的乘积形式,并给出求逆的计算方法。
The method of Doolittle resolve matris is as follows:Under the non-peculiarcondition in the main factor matrix of everystep of the matrix. A is the only one to resolvethe form of the product of a down triangle matrix in pieces and an up triangle matrix inpieces.The article comes to the conclusion that if in the upper left main factor matrix ofmatrix exists a main factor matrix of r step peculiar,then A can be resolved as the form ofthe product of a down triangle matrix in pieces and an upper triangle matrix in pieces. Thearticle also presents the calculated mathod to seek the solution of its matris form.
出处
《天津理工学院学报》
1995年第3期35-39,共5页
Journal of Tianjin Institute of Technology
关键词
逆矩阵
初等变换
三角矩阵
分块矩阵
矩阵
分解
inverse matrix elementary operation triangle matrix full rand matrix matrix in pieces