摘要
当不是g(x)的因子,g(x)和a(x)g(x)分别是二元线性循环码C(x)和Csub(x)的生成多项式时,则Csub(x)是C(x)的子码。恰当选用C(x)/Csub(x)的2j个余式将C(x)转换为子码,然后对子码捕错;当错误矢量E(x)的重量W(E)t,且有连续k-j位为零时,就能正确译码。该法提高了纠错能力,还可分类译码输出,结构简单,实现容易。
Assume that is not an irreducible factor of g(x),g(x) and a(x)g(x) are generator polynomials of linear cyclic codes,C(x) and Cub(x),over GF(2) respectively,then Csub(x) is a subcode of the C(x).Selecting 2j redundant factories of the C(x)/Csub(x) properly,transfering C(x) into subcode form and error-trapping decoding for them,the decoding process can be performed correctly only if the weight,W(E),of the error vector E(x), is not larger than t and there exist k-j consecutive zeros.This decoding technique not only improve the error correcting ability but also can get the output of the sorting decoding form with easy implementation.
出处
《通信学报》
EI
CSCD
北大核心
1995年第6期107-112,共6页
Journal on Communications
关键词
子码
捕错译码
分类译码
纠错编码
subcode,error-trapping decoding,sorting decoding