摘要
设Tn表示全体n阶树所构成的集合,记T(n,d)={T∈Tn.|T中恰有d(≥1)个环}.本文证明了T(n,d)的本原指数集合Snd为:(d≥2).并且证明了T(n,d)的暴敛指数集Sn={2,3,……,n-1}.进一步刻划了T(n,d)中本原指数达到Zn—4,Zn—2的树的特征.
Let Tn denote the set of all trees of order n. Let T(n,d) = {T∈Tn| The sum of all loops in T is d (≥1)}. In this paper, we prove that the set Sn,d of primitive exponent of T(n,d) is:And we prove that the set Sn of convergence index of T(n,d) is:Moreover, we also obtain a characterization of the primitive tree whose exponents equal to 2n-4 and 2n-2.
出处
《同济大学学报(自然科学版)》
EI
CAS
CSCD
1995年第1期75-78,共4页
Journal of Tongji University:Natural Science
关键词
n阶树
本原指数
幂敛指数
分布
Tree
The exponent of primitive
The index of convergence