摘要
在研究瞬变电磁场的奇点展开法中.散射物体的自然频率(极点)是一个非常重要的参数.而三维导电散射体的自然频率的计算一直是个相当困难的问题.本文采用奇点展开法求极点的Kuhn法首次计算出了多种导电矩形体的自然频率,并通过直接的和间接的方法证明了所得极点的正确性,讨论了导电矩形体由于几何对称性而产生的极点简并现象.
When the problems of the transient electromagnetic scattering of an object are researched by using Singularity Expansion Method (SEM), the natural frequency (the pole in the s complex plane) of the object is a very important parameter. It is rather difficult to calculate the natural frequency of a three- dimensional conducting scatterer. In this paper the natural frequencies of the conducting rectangular boxes are determined originally and verified by other works. The degenerate phenomenon of the poles raised by the geometrical symmetry of the ocnducting rectangular boxes and the distributed property of the poles in s complex plane are discussed.
出处
《微波学报》
CSCD
北大核心
1995年第1期26-33,共8页
Journal of Microwaves
基金
国家自然科学基金项目
关键词
瞬变电磁场
奇点展开法
导电矩形体
自然频率
Transient electromagnetic field, Singularity expansion method, Conducting rectangular box, Natural frequency, Kuhn algorithm