摘要
群G称为B_p群,如果N_g(P)为p-幂零蕴含G为P-幂零。证明了以下结论:1)设P为有限群G的p-Sylow子群,如果P的每极小子群及4阶循环子群在P内拟正规,则G为B_p群2)设P为有限群G的P-Sylow子群。如果P的极小子群及4阶循环子群在N_G(P)内拟正规,且其每元与N_G(P)的每q-元(q<p)可交换相乘,则G为P-幂零。3)有限群G若有正规子群N,使G/N∈,又对每P∈Syl(N).均有P的极小于群及4阶循环子群在N_G(P)内拟正规,则G∈。其中为包含超可解群系的饱和群系。
Call a p-subgroup P of a group H isv- regular in H. if every minimal subgroup and cyclic sub-group of order 4 of P are quasinormal in H,The following conclusion is proved:1)If the Sylowp-subgroup P of a finite group G is σ-regular in C,thenG is a B, group.2)Assume that P is a Sylow p-subgroup of a finite group G,If P is v-regular in N_G(p)and ev-ery element of P permuts with every q-element(q<P)of N_G (p ). then G isp- nilpotent.3) If a finite group G has a normal subgroup N such that G/N∈and each P∈SylN is σ-regu-lar in N_G(P).then G∈.where,is a saturated formtion containing the formation of supersolv-able grotups.
出处
《西南师范大学学报(自然科学版)》
CAS
CSCD
1995年第5期471-473,共3页
Journal of Southwest China Normal University(Natural Science Edition)
关键词
Bp群
P-幂零群
超可解群
极小子群
有限群
B_p grotups
p-ni potent groups
supersolvable groups
minimal subgroups