摘要
研究了R ̄N上具有临界Sobolev指数的双调和方程,且非平凡解的存在性.这里a(x)≥0且;应用形变引理和拓扑度方法证明了当充分小时,上述方程至少有一个不变号的非平凡解.
The existence of non-trivialsolutin of the biharmonic equation with critical exponent△ ̄(2)u+a(x)u=|u| ̄(2 ̄*-2)u inR ̄N,and was investigated.Here and,N≥5,2 ̄(*)=2N/(N-4).It has been proven that the above equation has at least one non-trivial solution which do notchange sign in R ̄N if is small enough by means of deformation lemma and the method oftopological degree.
出处
《厦门大学学报(自然科学版)》
CAS
CSCD
北大核心
1995年第6期887-892,共6页
Journal of Xiamen University:Natural Science
基金
福建省自然科学基金