摘要
原子体系的精细波函数是群SU_2在各种首权下的不可约表示基。群SU2的约化,虽有一套完整的处理方法,但计算十分繁杂,且比较抽象。本文通过分析群SU_2_与置换群s_n间的隔同态对应关系,由置换s_n的不可约基,得到群sU_2的不可约基。本文以四(价)电于原于体系为例进入讨论、、.分三部:一、实验事实和量子力学一般结论;二s_1的约化系数矩阵及其不可约表示基;三、uJ,在首权s=2,1,o下的不可约表示基——v(价)电子原子体系的精细波函数。
The meticulous wave function of atomic system is the irreducible representa-tion basic vectors of group SU_2 with all sorts of head weights.There is a complete set ofmethod disposing the reduction of group SU_2 but its calculation is very complicated and ab-stract.Analysing the homomorphism from SU_2 into S_n irreducible representation basic vec-tors of group S_n are obtained.This article disscuss in three respects with four eletronatomic systems as an example:1.experment facts and general conclusion of quantum me-chanics,2.the reduced coefficient matrix of group S_4 and its irreducible represei1tation basicvectors,3.the irreducible representation basic vectors of group SU_2 with head weights S=2,1,0--the meticulous wave function of four eletron atomic systeim.
出处
《信阳师范学院学报(自然科学版)》
CAS
1995年第4期378-384,共7页
Journal of Xinyang Normal University(Natural Science Edition)
关键词
波函数
群论
原子体系
量子学
能级精细结构
Atomic statinoary state wave function
Young diagrams
Irreducible representa-tions
Group theory method