摘要
基于广义Biot理论对土体弹塑性团结过程进行求解,建立了问题对应的参变量变分理论,并给出了数学证明。在此基础上推导了有限元分析列式,问题的求解最终化为参数二次规划问题。本文提出的方法适用于固结弹塑性分析的关联与非关联流动问题,也可处理各类软化问题。
The generalized Biot formulation is adopted to solve the soil non-linear consolidation problems.The parametric variational principle corresponding to this problem is put forward and proved.The finite element equations based on the principle are given.The consolidation problem is finally changed into parametric quadratic programming problem.The method presented in this paper is suitable for solving the associated or nonassociated plasticity flow process,and it can also be used to solve various softening problems.
出处
《岩土力学》
EI
CSCD
1995年第1期35-45,共11页
Rock and Soil Mechanics
关键词
固结
弹塑性
规划法
有限元
土体
consolidation
elasto-plasticity
programming method
finite element method