摘要
设{X_k(t),-∞<t<∞} 为列相互独立的Ornstein-Uhlenbeoh过程,{X(t)=sum from n=1 to ∞ X_k(t),-∞<t<∞}为其无穷级数。本文讨论了{X(t),-∞<t<∞}在L_2-模下的极限性质,得到了与Wiener过程相似的重对数律与Chung-重对数律。
Let {Xk(t), - ∞<t<∞}k=1∞ be a sequence of independent Ornetein-Uhlenbechprocesses, X(t) =∑Xk(t)> - ∞<t<∞. We establish the law of the iterated logarithm and the Chung type law of the iterated logarithm for {X(t), - ∞<t<∞} under L2-Norm, respectively.
出处
《应用概率统计》
CSCD
北大核心
1995年第1期33-43,共11页
Chinese Journal of Applied Probability and Statistics