摘要
本文考虑形如“x^((n))—∑_1~nA_i(t)x^((i—1))=f(t,x,x',…,x^((n—1))(0≤t≤1),B(x,x',…,x^(n—1))=0”的非线性泛函边值问题,利用Borsuk定理与Leray-Schaud-er不动点定理,得到了上述边值问题的若干可解性结果。
In this paper it is considered the nonlinear functional boundary value problem ' x(n) =
suk theorem and the Leray-Schauder theorem,two existence theorems for the boundary value problem in question are obtained.
出处
《应用数学》
CSCD
北大核心
1995年第4期459-464,共6页
Mathematica Applicata
关键词
泛函边值问题
Borsuk定理
可解性
边值问题
Functional boundary value problem
Borsuk theorem
Leray-Schauder fixed point theorem