期刊文献+

位移模式对Cross-PLY矩形板热弹性响应的影响 被引量:1

Effect of In-Plane Displacement Model on ThermoelasticRcsponses of Cross-Ply Rectangular Plate
下载PDF
导出
摘要 本文建立了以Reissner混合变分原理为基础的迭层板剪切变形理论来求解Cross-PLY矩形板的热弯曲问题,用二种方式来模拟平面位移沿厚度的变化:将一阶剪切变形理论的平面位移叠加一项交错线性函数;设平面住移是分段线性连续函数。为保证层间应力的连续性,将横向剪切应力处理成厚度坐标的二次函数,温度沿厚度线性变化。通过对称及反对称Cross-PLY矩形板的热应力及挠度分析比较,指出了位移模式对热弹性响应的影响。 A shear deformation theory based upon a new mixed variational principle proposed by Reissner(1984) is developed to study the thermal bending problem for cross-ply rectangular plates. Two meth-ods are used to simulate the thickness variation of in-plane displacement: ① A zigzas-shal)ed linearfunction is included in the in-plane displacement one-order shear deformation theory ② Across eachindividual layer, piecewise linear continuous displacement is assumed. The thickness variation of tem-perature is considered to be linear. By comparing the thermal stresses and deflection for symmetric andantisymmetric rectangular plate using the two methods, effect of in-plane displacement model on ther-moelastic responses of cross-ply rectangular plate can be known.
出处 《应用力学学报》 CAS CSCD 北大核心 1995年第3期67-72,共6页 Chinese Journal of Applied Mechanics
基金 国家自然科学基金
关键词 热弹性响应 横向剪切应力 热应力 挠度 迭层板 thermoelastic response,transverse shear stress,thermal stress,deflection.
  • 相关文献

参考文献1

  • 1Wu C H,J Thermal Stresses,1980年,3卷,4期,365页

同被引文献10

  • 1邹贵平.层合板壳问题的哈密顿体系与哈密顿型广义变分原理[J].上海大学学报(自然科学版),1996,2(2):119-128. 被引量:5
  • 2[1]RECLOLY J N,HSU Y S.Effects of shear deformation and anisotropy on the thermal bending of laced composite plates of Thermal Stresses[J].Journal of Thermal Stresses,1980,3:475-493.
  • 3[2]KHDEIR A A,REDOLY J N.Thermal stresses and deflections of cross ply laminated plates using refined plate theories[J].Journal of Thermal Stresses,1991,14:419-438.
  • 4[4]OOTAO Y,TANIGAWA Y.Control of transient thermoelastic displacement of a two-layered composite plate constructed of isotropie elastic and piezoelectric layers due to non-uniform heating[J].Archive of Applied Mechanics,2001,71:207-230.
  • 5[5]KAPURIA S,DUMIR P C,SENGUPTA S.Three-dimensienal solution for shape control of a simply supported rectangular hybrid plate[J].Journal of Thermal Stresses,1999,22:159-176.
  • 6[6]STEELE C R,KIM Y Y.Modified mixed variational principle and the state-vector equation for elastic bodies and shells of revolution[J].Journal of Applied Mechanics,1992,59:587-598
  • 7[8]QING G H,LIU Y H,GUO Q,et al.Dynamic analysis for threedimensional laminated plates and panels with damping[J].International Journal of Mechanical Sciences,2008,50(1):83-91.
  • 8[9]QING G H,QIU J J,LIU Y H.A semi-analytical solution for dynamic analysis of plate with piezoelectric patches[J].International Journal of So-lids and Structures,2006,43(6):1388-1403.
  • 9[10]QING G H,QIU J J,LIU Y H.Free vibration analysis of stiffened laminated plates[J].Interuational Journal of Solids and Structures,2006,43(6):1357-1371.
  • 10钟万勰.应用力学对偶体系[M].北京:科学出版社,2003..

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部