摘要
本文讨论了带若干条任意形状裂缝的不同材料拼接平面的混合问题,即已知裂缝一侧的位移和另一侧的外应力求弹性平衡,给出了混合问题的正确提法,问题是用复变方法求解的,并归结为求解某种正则型奇异积分方程组,证明了适当且唯一地选择某些待定常数的值,该方程组有唯一解。
In this paper,We discuss the mixed boundary value problem in an infinite elastic plane bonded by two different materials with cracks, i. e. , given the displacement on one side of cracks and the external stress on another side of cracks,to determine elastic equilibrium. The precise formulation of the problem is given. The problem is reduced to some system of singular integral equations, which is proved to be uniquely solvable with undetermined constants suitably chosen.
出处
《应用数学》
CSCD
北大核心
1995年第2期167-171,共5页
Mathematica Applicata
基金
国家基金委自然科学基金资助课题
关键词
混合边值问题
材料
拼接平面
弹性平面
裂缝
Mixed boundary value problem
System of singular integral equations
Plane elasticity