摘要
设F_q是特征为2的有限域,本文利用F_q上2v+2维伪辛几何中包含固定的1维非迷向子空间的一类2维非迷向子空间作处理,构作了具有2(q—1)个结合类的结合方案和PBIB设计,并计算了相应的参数。
Let Fq be a finite field of characteristic 2. In this paper, the authors use a class of 2-di-mensional non-isotropic subspaces containing a fixed 1-dimensional non-isotropic subspaces in pseudo-sympletic geometry over Fq as treatments to construct an association scheme and PBIB designs with 2(q-1) associate classes whose parameters are also computed.
出处
《应用数学》
CSCD
北大核心
1995年第2期201-210,共10页
Mathematica Applicata
关键词
有限域
伪辛几何
非迷向子空间
PBIB设计
Finite field of characteristic 2
Pseudo-sympletic geometry
Non-isotropic sub-space
PBIB design