期刊文献+

高阶泛函微分方程解的渐近分类与振动 被引量:1

Oscillation and Asymptotic Classification of Solutions of High Order Functional Differential Equations
下载PDF
导出
摘要 本文借助于Lebesgue测度等工具研究了一类高阶非线性泛函微分方程解的渐近分类与振动性。 In this paper,we discussed the nonlinear FDE:[a(t)(x(n)(t))(x' (t)]' +Q(t,x(t) ,x (q(t))) = P(t,x(t),x' (p(t))) by means of the Lebesgue measure. Some nonoscillatory and oscillatory results are given.
出处 《应用数学》 CSCD 北大核心 1995年第2期135-140,共6页 Mathematica Applicata
关键词 渐近性 振动 泛函微分方程 Lebesgue measure Asymptotic property Oscillatory
  • 相关文献

同被引文献13

  • 1米玉珍,牛连杰,余秀萍.高阶中立型微分方程的振动性[J].河北建筑工程学院学报,2004,22(1):131-133. 被引量:2
  • 2王连文.一类高阶泛函微分方程解的渐近分析[J].山东大学学报(自然科学版),1993,28(4):383-390. 被引量:1
  • 3GRACE S R, LALLI B S. Oscillation theorems for nth order delay differential equations [J]. Journal of Mathematical Analysis and Applications, 1983,91 : 352-366.
  • 4GRACE S tL Oscillatory and asymptotic behavior of certain functional differential equations [J]. Journal of Matbematical Analysis and Applications, 1991,162:177-188.
  • 5GRACE S R. Oscillatory and asymptotic behavior of delay differential equations with a nonlinear damping term [J].Journal of Mathematical Analysis and Applieations, 1992, 168: 306- 318.
  • 6AGARWAL R P, GRACE S R. Oscillation of certain functional differential equations[J]. Computers and Mathematics with Applicatuons, 1999,38:143-153.
  • 7CANDAN T, DAHIYA R S. Oscillation theorems for nth-order neutral functional differential equations[J]. Mathematical and Computer Modelling, 2006,43: 357-367.
  • 8ZHANG C L, FENG W Z, YANG F J. Oscillations of higher order nonlinear functional differential equations with impulses [J]. Applied Mathematics and Computation, 2007, 190: 370- 381.
  • 9KARTASATOS I T. On the oscillation of solutions of equation dmu/dtm+a(t)/u/msgnu=0[J].Mathematicheskii Sbornik, 1964,65 : 172-187.
  • 10PHILOS C G. A new criterion for the oscillatory and asymptotic behavior of delay differential equations [J].Bulletin of the Polish Academy of Sciences Mathematics, 1981, 39: 61- 64.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部