摘要
本文借助Banach空间中的新不等式,通过迭代过程x_(n+1)=x_n—a_nAx_n(x_0∈D(A),n=0,1,2,…)研究非线性发展方程du/dt=—Au解的渐近性,构造性地证明了,在一定条件下{x_n}的极限点就是该发展方程的平衡点,推广了文献[1]的结论。
A new inequality of Banach space and the iterative process
D(A),n = 0,1,2 ,---,' are used to research the asymptotic behavior of solutions of
Au. It is proved that the limit of the sequence {xn} is just the equilibrium point of the equation. The conclusions generalize those in [1].
出处
《应用数学》
CSCD
北大核心
1995年第3期328-332,共5页
Mathematica Applicata
关键词
增生映象
非线性
发展方程
解
渐近性
Uniformly smooth banach spaces
Accretive mappings
Nonlinear evolution e-quations
Asymptotic behavier of solutions