摘要
本文将t(t是大于2的整数)元整系数多项式看成为系数为t—2元整系数多项式的二元多项式,建立了多元整系数多项式因式分解的一种新理论,进而得到了分解多元整系数多项式的一个有力的算法。
This paper regards a polynomials in t variables (t is an integral numbe and greater than 2) with integral coefficients as a birariate polynomial with polynomials in t-z variables with integral coefficients as its coefficients. We found a new theory of factorization of multivariate polynomials with integral coefficients. Furthermore,a strong algorithm is constructed for factoring multivariate polynonials with integral coefficients.
出处
《应用数学》
CSCD
北大核心
1995年第3期339-344,共6页
Mathematica Applicata
基金
国家自然科学基金