摘要
本文将二阶线性椭圆方程的已知结果与压缩映像原理结合研究任意维数的非线性拟抛物方程 a_(ij)(x,t)u_(x_ix_jt)+b_i(x,t)u_(x_it)+c(x,t)u_t=F(x,t,u,Du,D^2u)的初边值问题,在条件(H_1)—(H_4)下,得到了古典解u(x,t)∈C^1([0,T];C^(2+α)())的存在唯一性,讨论了解的光滑性渐适性质与blow-up,推广了很多已知结果。
In this paper,by combining the known results of the linear elliptic equation of second order with the contraction mapping principle,we have studied the initial boundary value problem of the nonlinear pseudoparabolic equations in arbitrary dimensions
Under the conditions (H1) - (H4),we obtain the existence and uniqueness of the classical solution u(x,t) C1 ([0,T]iC2+a). Moreover the smoothness,asymptotic behavior and blow-up of solution are discussed,so many known results are generalized.
出处
《应用数学》
CSCD
北大核心
1995年第4期419-423,共5页
Mathematica Applicata
基金
黑龙江省自然科学基金
关键词
非线性
拟抛物型方程
初边值问题
Multidimension
Nonlinear
Pseudoparabolic equation
Initial boundary value