摘要
本文在不用克希霍夫一拉夫假设的弹性板一般理论的基础上,建立了不用克希霍夫一拉夫假设的弹性圆板的一级近似理论,对圆板在四周固定和均布载荷的条件下,得到了具体的轴对称分析解,并和经典的圆薄板解进行了比较,证明本文新解更加接近实验结果,本文也具体地讨论了理论结果中厚度增大时的影响。
Based on the general theory of elastic plates which abandons Kirchhoff-Love assumpt ion in the classical theory,this paper establisbes a first order approxi-mation theory of elastic circular plates with non-Kirchhoff-Love assumption,and presents an analytic solution to the axisymmetric problem of elastic circular plates with clamped boundary under uniformly distributed load.By comparing with the classical solution of the thin circular plates,it is verified that the new solution is closer to the experiment results than the classical solution,By virtl1e of the new theory,the influence of diameter-to-thickness ratio upon the precision of the classical theory is examined.
出处
《应用数学和力学》
EI
CSCD
北大核心
1995年第2期95-106,共12页
Applied Mathematics and Mechanics
关键词
弹性力学
圆板
弹性板
K-L假设
elasticity,circular plates,Kirchhoff-Love assumption