摘要
本文采用计算机代数-摄动法讨论一个非线性波动方程的Caychy问题高阶渐近解,将特征坐标变形与重整化方法相结合,消除直接展开解的长期项,并利用计算机代数软件进行符号运算,得到该问题的四项摄动解,所得的渐近解与数值解的比较表明:对较小的ε,两者相吻合;对较大的ε(如ε=0.25),两者也相当符合。
In this paper,the higher-order asymptotic solution to the Cauchy problem of a nonlinear wave equation is found by using a computer algebra-perturbation method.The secular terms in the solution from straightforward expansions are eliminated with the straining of characteristic coordinates and the use of the renormalization technique, and the four-teru uniformly valid solution is obtained with the symbolic computation using a computer algebra system. The comparison of the derived asymptotic solution and the numerical solution shows that they coincide with each other for smaller ε and agree quite well for larger ε (e.g.,ε=0.25).
出处
《应用数学和力学》
CSCD
北大核心
1995年第5期403-408,共6页
Applied Mathematics and Mechanics
基金
国家自然科学基金和上海市自然科学基金
关键词
非线性
摄动
计算机代数
重整化法
波动方程
nonlinear wave, perturbation, computer algebra, renormalization te-chnique, approximate analytical method of characteristics