摘要
本文找出二维弱奇异第一类积分方程作用着约束方程的解p。其中是原点在M(r,θ)的局部极坐标,(r,θ)是原点在O(0,0)的总体极坐标:k和F是给出的连续函数;是一常数;(常数)是研究域Q的边界围线。所用方法可推广到三维情形。
In this paper, the solution of a 2-D weak singular integral equation of the first kind subjected to constraint is found and listed where (s.)is a local polar coordinating with origin at M(r,θ),(r、θ) is the glo-bal polar coordinating with origin at O(0,0) : k and F are given continuous functions:and C are constants: is the boundary contour of considering range Q.The method used can be exrended to 3-D cases.
出处
《应用数学和力学》
CSCD
北大核心
1995年第5期415-420,共6页
Applied Mathematics and Mechanics
基金
广东省自然科学基金
关键词
积分方程
接触问题
奇异积分方程
解
Radon transform, Abel integral equation, range, theorem of integral mean value of function,contact problem,Hertz's solution