摘要
设Pn,Qn为Rudin-Shapiro多项式,ψ为相应的Rudin-Shapiro函数,本文引入ψ的伴随函数△与,讨论ψ的分析性质与算术性质。为讨论ψ的分形性质,我们确定了△及的Holder指数,利用该结果及插值技巧确定了ψ的函数图象的Bouligand维数与packing维数均为3/2.从而,该函数可作为一维Brown运动的模拟。
Let Pn and Qn be the Rudin-Shapiro polynomials and let ψ be the associated Rudin-Shapiro function. We study first the arithmetic and analytic properties of ψ by studing two auxiliary functions △ and . To discuss the fractal structure of ψ, we determine the Hlder exponent of △ and. Then by using interpolating technique, we prove that the Bouligand dimension and the Packing dimension of the graph of ψ are 3/2. The result shows that we can simulate one dimensional Brown Movement by the Rudin-Shapiro function.
出处
《应用数学学报》
CSCD
北大核心
1995年第1期27-36,共10页
Acta Mathematicae Applicatae Sinica
基金
武汉工业大学科学技术基金