期刊文献+

Rndin─Shapiro函数的Bouligand维数 被引量:3

THE BOULIGAND DIMENSION OF THE RUDIN-SHAPIRO FUNCTION
原文传递
导出
摘要 设Pn,Qn为Rudin-Shapiro多项式,ψ为相应的Rudin-Shapiro函数,本文引入ψ的伴随函数△与,讨论ψ的分析性质与算术性质。为讨论ψ的分形性质,我们确定了△及的Holder指数,利用该结果及插值技巧确定了ψ的函数图象的Bouligand维数与packing维数均为3/2.从而,该函数可作为一维Brown运动的模拟。 Let Pn and Qn be the Rudin-Shapiro polynomials and let ψ be the associated Rudin-Shapiro function. We study first the arithmetic and analytic properties of ψ by studing two auxiliary functions △ and . To discuss the fractal structure of ψ, we determine the Hlder exponent of △ and. Then by using interpolating technique, we prove that the Bouligand dimension and the Packing dimension of the graph of ψ are 3/2. The result shows that we can simulate one dimensional Brown Movement by the Rudin-Shapiro function.
作者 乐泓
出处 《应用数学学报》 CSCD 北大核心 1995年第1期27-36,共10页 Acta Mathematicae Applicatae Sinica
基金 武汉工业大学科学技术基金
关键词 分形 BOULIGAND维数 R-S函数 Rubin-Shapiro function factal Bouligand dimension
  • 相关文献

参考文献1

二级参考文献11

  • 1Siegried Graf. Statistically self-similar fractals[J] 1987,Probability Theory and Related Fields(3):357~392
  • 2Jean-Paul Allouche,Michel Mendes France. Quasicrystal Ising chain and automata theory[J] 1986,Journal of Statistical Physics(5-6):809~821
  • 3J. Coquet. A summation formula related to the binary digits[J] 1983,Inventiones Mathematicae(1):107~115
  • 4F. M. Dekking. The spectrum of dynamical systems arising from substitutions of constant length[J] 1978,Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete(3):221~239
  • 5F. M. Dekking,M. Keane. Mixing properties of substitutions[J] 1978,Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete(1):23~33
  • 6G. Rozenberg,A. Lindenmayer. Developmental systems with locally catenative formulas[J] 1973,Acta Informatica(3):214~248
  • 7Ethan M. Coven,G. A. Hedlund. Sequences with minimal block growth[J] 1973,Mathematical Systems Theory(2):138~153
  • 8John C. Martin. Minimal flows arising from substitutions of non-constant length[J] 1973,Mathematical Systems Theory(1):73~82
  • 9Alan Cobham. Uniform tag sequences[J] 1972,Mathematical Systems Theory(1-2):164~192
  • 10Alan Cobham. On the base-dependence of sets of numbers recognizable by finite automata[J] 1969,Mathematical Systems Theory(2):186~192

共引文献14

同被引文献1

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部