摘要
本文研究了高阶非齐次GBBM方程的Cauchy问题和初边值问题。对任意的有界或无界光滑区域Ω,采用Banach不动点原理及一系列的积分估计,建立了高阶非齐次GBBM方程的Cauchy问题和初边值问题在W2m,p(Ω)上整体强解的存在唯一性,这些结果改进并完善了BBM方程的已有结果,与此同时,我们还讨论了强解的正则性。
This paper concerns the Cauchy problem and the initial boundary value (IBV)problem for the inhomogeneous GBBM equations of higher order. For any bounded or unbounded smooth domain, the existence and uniqueness of global strong solution for the Cauchy problem and IBV problem of inhomogenous GBBM equations of higher order in W2m,p(Ω) are established by using Banach fixed point theorem and a prior estimates, these results (and results in it's Remarks) have improved the well known results even in the case of GBBM equation. Meanwhiles, we also discuss the regularity of the strong solution.
出处
《应用数学学报》
CSCD
北大核心
1995年第4期487-498,共12页
Acta Mathematicae Applicatae Sinica
关键词
GBBM方程
初边值问题
强解
初值问题
GBBM equations, Cauchy problem, initial boundary value problem,strong solution