摘要
一个前馈式神经元网络系统被设计用来重建具有大的丢失能量的共振态粒子质量.以在LHC(largehadroncollider)上pp对撞产生的Higgs粒子的衰变模式H0→τ+τ-→eμx为例,神经元网络法正确地重建了Higgs粒子质量MH的峰值及比常规方法好的宽度.该法同时具有抗本底事例干扰能力,对共振态粒子质量的精确测量及新粒子的寻找具有实用价值.
A feed--forward neural network is designed to reconstruct the mass of resonance particles with large energy loss.For the Higgs particles produced at LHC pp collider decaying through Ho→τ+τ-→eμx,this neural network correctly reconstructs its mass with the right peak position and better width than does the conventional method. The network alsoposesses the capability of suppressing background events.This kind of neural network can be widely used in the search for new particles and in precise mass measurement of resonance potticles.
基金
国家自然科学基金
关键词
共振态粒子
丢失能量
高能物理实验
神经网络
feed-forward neural network
resonance particle
energy loss
mass reconstruction