期刊文献+

两个互素因子链上的幂GCD矩阵的行列式与幂LCM矩阵的行列式的整除性 被引量:6

Divisibility properties of determinants of power GCD matrices and power LCM matrices on two coprime divisor chains
原文传递
导出
摘要 设S={X_1,X_2,…,X_n}是由n个不同的正整数组成的集合,并设整数a≥1.如果n阶矩阵的第i行j列元素是S中元素X_i和X_j的最大公因子的a次幂(X_i,x_j)~a,则称该矩阵是定义在S上的a次幂最大公因子(GCD)矩阵,用(S^a)表示.类似可定义a次幂LCM矩阵[S^a].作者证明了:设S由两个互素的因子链构成并且1∈S.若a|d,则det(S^a)|det(S^a),det[S^a]|det[S^b]和det(S^b)|det[S^b].若S由两个不互素的因子链构成,则如此分解定理不成立. Let S={x_1,x_2,…,x_n } be a set of n distinct positive integers and a≥1 an integer.The matrix having the a-th power (x_i,x_j)~a of the greatest common divisor of x_i and x_j as its i,j-entry is called a-th power greatest common divisor (GCD) matrix defined on S,denoted by (S^a).Similarly we can define the a-th power LCM matrix[S^a].In this paper,the authors prove that if S consists of two coprime divisor chains and 1∈S,a]b,then det(S^a)]det(S^b),det[S^a]]det[S^b],det(S^a)]det[S^b].But such factorizations fail to be true if S consists of two divisor chains which are not coprime.
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第6期1581-1584,共4页 Journal of Sichuan University(Natural Science Edition)
基金 教育部新世纪优秀人才支持计划基金(NCEF-06-0785)
  • 相关文献

参考文献13

  • 1Jianrong Zhao,Shaofang Hong,Qunying Liao,K. P. Shum.On the divisibility of power LCM matrices by power GCD matrices[J].Czechoslovak Mathematical Journal.2007(1)
  • 2Wei Cao.On Hong’s conjecture for power LCM matrices[J].Czechoslovak Mathematical Journal.2007(1)
  • 3Shaofang Hong,Qi Sun.Determinants of Matrices Associated with Incidence Functions on Posets[J].Czechoslovak Mathematical Journal.2004(2)
  • 4Hong S,Lee Enoch S K.Asymptotic behavior of eigenvalues of reciprocal power LCM matrices[].Glasgow Mathematical Journal.2008
  • 5Hong S,Sun Q.determinants of matrices associated with incidence functions on posets[].Czechoslovak Mathematical Journal.2007
  • 6Smith H J.On the value of a certain arithmetical determinant. Proceedings of the London Mathematical Society . 1875-1876
  • 7Codeca P,,Nair M.Calculating a determinant associated with multilplicative functions[].Boll Unione Mat Ital Sez B A rtic Ric Mat.2002
  • 8Hilberdink T.determinants of multiplicative Toeplitz matrices[].Acta Arithmetica.2006
  • 9Hong S.Divisibility properties of power GCD matrices and power LCM matrices[].Linear Algebra and Its Applications.2008
  • 10beuruue K,Ligh S.On GCD and LCM matrices[].Linear Algebra and Its Applications.1992

同被引文献109

  • 1Bourque K,Ligh S.On GCD and LCM matrices[J].Linear Algebra Appl,1992,174:65.
  • 2Bourque K,Ligh S.Matrices associated with classes of arithmetical functions[J].Number Theory,1993,45:367.
  • 3Bourque K,Ligh S.Matrices associated with arithmetical functions[J].Linear Multilinear Algebra,1993,34:261.
  • 4Cao W.On Hongs conjecture for power LCM matrices[J].Czechoslovak Math,2007,57:253.
  • 5Codeca P,Nair M.Calculating a determinant associated with multilplicative functions[J].Boll Unione Mat Ital Sez B Artic Ric Mat,2002,5(8):545.
  • 6Feng W,Hong S,Zhao J.Divisibility properties of power LCM matrices by power GCD matrices on gcd-closed sets[J].Discrete Math,2009,309:2627.
  • 7Haukkanen P,Korkee I.Notes on the divisibility of LCM and GCD matrices[J].International J Math and Math Science,2005,6:925.
  • 8He C,Zhao J.More on divisibility of determinants of LCM matrices on GCD-closed sets[J].Southeast Asian Bull Math,2005,29:887.
  • 9Hilberdink T.Determinants of multiplicative Toeplitz matrices[J].Acta Arith,2006,125:265.
  • 10Hong S.On the Bourque-Ligh conjecture of least common multiple matrices[J].Algebra,1999,218:216.

引证文献6

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部