期刊文献+

导子的局部特征

A Full-derivable Point on Triangular Algebras
下载PDF
导出
摘要 设T为三角代数,如果对每一个从T到它自身的可加映射δ在Z点处可导,得出δ为导子,则称元素Z∈T是T的全可导点。该文主要用纯代数理论证明了P=(Ι1 Χ0 0 0)是一个全可导点。 Let T be a triangular algebra.We say that an element Z∈T is a full-derivable point of T if every additive map δ from T into itself derivable at Z is a derivation.In this paper,we will use a pure algebraic approach to prove that P=[Ι1 Χ0 0 0]is a full-derivable point.
作者 赵莎 朱军
出处 《杭州电子科技大学学报(自然科学版)》 2011年第1期76-78,共3页 Journal of Hangzhou Dianzi University:Natural Sciences
基金 杭州电子科技大学学生科研资助项目(KYF091609006)
关键词 导子 三角代数 全可导点 derivation triangular algebras full-derivable points
  • 相关文献

参考文献5

  • 1An Ruling,Hou Jinchuan.Characterization of derivations on triangular rings Additive maps derivable at idempo-tents[].Linear Algebra and Its Applications.2009
  • 2Zhu Jun,,Xiong Changping.All-derivable points in continuous nest algebras[].Journal of Mathematical Analysis and Applications.2008
  • 3Zhu Jun,Xiong Changping.Derivable mappings at unit operators[].Linear Algebra and Its Applications.2007
  • 4J. Zhu,,C. P. Xiong,,R. Y. Zhang.All-derivable points in the algebra of all upper triangular matrices[].Linear Algebra and Its Applications.2008
  • 5J. Zhu.All-derivable points of operator algebras[].Linear Algebra and Its Applications.2007

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部