期刊文献+

一类二阶非自治Hamilton系统的周期解

Periodic Solution of Some Non-Autonomous Second Order Hamiltonian Systems
下载PDF
导出
摘要 在线性增长和次线性增长条件下,利用临界点理论中的极小作用原理和鞍点定理,研究了二阶非自治Hamilton系统周期解的存在性问题,获得了一些新的可解性条件. By making use of the least action principle and the saddle point theorem in critical point theory. The existence of periodic solutions is studied for some non-autonomous second order Hamiltonian systems in the cases of and linear growth the sublinear growth.Some new solvability conditions are obtained.
出处 《吉首大学学报(自然科学版)》 CAS 2010年第6期14-18,共5页 Journal of Jishou University(Natural Sciences Edition)
基金 湖南省自然科学基金项目(09JJ6010)
关键词 非自治 HAMILTON系统 系统周期解 Hamiltonian Systems Second Order 线性增长条件 极小作用原理 临界点理论 存在性问题 鞍点定理 可解性 non-autonomous second order Hamiltonian systems the least action principle saddle point theorem sublinear growth linear growth periodic solutions
  • 相关文献

参考文献8

  • 1WU Xing-ping,TANG Chun-lei.Periodic Solution of a Class of Non-Autonomous Second Order Systems. Journal of Mathematical Analysis and Applications . 1999
  • 2ZHANG Xing-yong,ZHOU Ying-gao.Periodic Solutions of Nonautonomous Second Order Systems. Journal of Mathematical Analysis and Applications . 2008
  • 3C. Tang.Periodic solutions of non-autonomous second order systems with γ-quasisubadditive potential. Journal of Mathematical Analysis and Applications . 1995
  • 4X. Wu.Saddle point characterization and multiplicity of periodic solutions of non-autonomous second order systems. Nonlinear Analysis Theory Methods Applications . 2004
  • 5Tang Chun-Lei.Periodic solutions of nonautonomous second order systems. Journal of Mathematical . 1996
  • 6Tang Chun Lei.Periodic solutions for nonautonomous second order systems with sublinear nonlinearity. Proceedings of the American Mathematical Society . 1998
  • 7Mawhin J,Willem M.Critical point theory and Hamiltonian systems. . 1989
  • 8Berger M S,Schechter M.On the solvability of semi-linear gradient operator equations. Advances in Mathematics . 1977

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部