期刊文献+

二维辐射热传导方程的渐近展开方法

Asymptotic Expansion Methods for 2-D Radiation Heat Conduction Equations
下载PDF
导出
摘要 二维辐射热传导方程是具有多尺度、强间断等性质的方程,渐近展开方法是求解这类方程的一种有效的方法,其基本思想是将具有多尺度性质的椭圆型向量问题解耦为若干光滑系数(或单尺度性质)的椭圆型向量问题进行求解.针对二维辐射热传导方程的简化线性模型,设计并分析了基于渐近展开方法的线性有限元方法,并给出了相应的误差估计式. 2-D radiation heat conduction equations have multi-scale characteristic and strong discontinuity. The asymptotic expansion method is effective to solve such problems,whose main idea is to decompose the elliptic vector equation with multi-scale characteristic into several elliptic vector equation with smooth (or single-scale characteristic) coefficients.For a kind of linear radiation heat conduction equations,this paper designs and analyzes a linear finite element method based on the asymptotic expansion,and gives corresponding error estimation.
出处 《吉首大学学报(自然科学版)》 CAS 2010年第6期23-26,共4页 Journal of Jishou University(Natural Sciences Edition)
基金 湖南省教育厅科学研究项目(07C219)
关键词 二维 辐射热传导方程 渐近 展开方法 HEAT Conduction 2-D 性质 椭圆型 多尺度 有限元方法 误差估计式 向量 线性模型 问题 求解 基本思想 强间断 单尺度 系数 设计 2-D radiation heat conduction equations asymptotic expansion method multi-scale characteristic single-scale characteristic
  • 相关文献

参考文献1

二级参考文献4

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部