期刊文献+

关于1-无条件体两个仿射不变量的渐进性质

Asymptotic Properties of Two Affine Invariants for 1-unconditional Convex Bodies
下载PDF
导出
摘要 K是欧拉空间内的1-无条件体,该文给出了K中任意一个随机单形的仿射不变量m2(K)和S2(K)的渐进性质,同时,Bnp={x∈Rn∶‖x‖p≤1}时,讨论了这两个仿射不变量的渐进性质的应用。 Let K be a 1-unconditional convex bodies in Euclidean spaces.We study the asymptotic properties of two affine invariants m2(k) and S2(k) for a random simplex inside K.As an application of this method,we discuss the asymptotic properties of two affine invariants m2(k) and S2(k),where Bnp={x∈Rn∶‖x‖p≤1}.
出处 《安庆师范学院学报(自然科学版)》 2010年第3期21-24,共4页 Journal of Anqing Teachers College(Natural Science Edition)
关键词 条件 仿射不变量 渐进性质 欧拉空间 讨论 随机 单形 BNP convex body,1-uncodditional convex body,isotropic constant,Sylvester's problem
  • 相关文献

参考文献10

  • 1周其生.广义矩阵迹的算术-几何平均不等式[J].安庆师范学院学报(自然科学版),2008,14(2):1-3. 被引量:3
  • 2HE Binwu & LENG Gangsong Department of Mathematics, Shanghai University, Shanghai 200444, China.Isotropic bodies and Bourgain's problem[J].Science China Mathematics,2005,48(5):666-679. 被引量:6
  • 3Binwu He,Gangsong Leng.Isotropic bodies and Bourgain’s problem[J]. Science in China Series A: Mathematics . 2005 (5)
  • 4S.G.Bobkov,F.L.Nazarov.On convex bodies andlog-concave probability measures with unconditional basis Geom.Aspectsof Funct.Analysis Mil man-Schecht man eds. Lecture Notes in Mathematics . 2003
  • 5F.John.Polar correspondence with respect to convex regions. J.Duke Math . 1937
  • 6Bourgain,J.,Klartag,B.,Milman,V.D.Symmetrization and isotropic constants of convex bodies. Geo- metric Aspects of Functional Analysis . 2004
  • 7S.G. Bobkov,F.L. Nazarov.Large deviations of typical linear functionals on a convex body with unconditional basis. Stochastic inequalities and applications, Progr Probab Birkh?user . 2003
  • 8LUTWAKE,YANGD,ZHANGG Y.A new ellipsoidassociated with convex bodies. Duke MathematicalJournal . 2000
  • 9BOURGAIN J,KLARTAGB,MILMAN V D.Areduction of the slicing problem to finite volume ratiobodies[C}. Geometry/Functional Analysis,C R AcadSci Paris,Ser I . 2003
  • 10Giannopoulos A.Notes on isotropic convex bodies. . 2003

二级参考文献17

  • 1周其生,杜鸿科,曹怀信.关于C^*-代数Mn(A)上矩阵迹的一些不等式[J].高校应用数学学报(A辑),2006,21(2):245-250. 被引量:2
  • 2周其生,鲁世杰.从矩阵迹关系过渡到算子迹关系的一个通用方法[J].高校应用数学学报(A辑),1997(1):19-24. 被引量:9
  • 3陈道琦.关于半正定Hermite矩阵乘积迹的一个不等式[J].数学学报,1988,4:565-569.
  • 4Conway,J. B. A Course in Functional Analysis[M]. Springer-Verlag, 1985:273-274.
  • 5Murphy G J. C^*- Algebra and Operator Theory[M]. Bostorn: Academine Press,Inc, 1990.
  • 6R. Bellman,Some inequalities for positive definite matrices[A]. In: E. F. Beckenbach (Ed.), General Inequalities[C]. Proceedings of the 2nd International Conference on General Inequalities, Birkhauser, Basel, 1980(2) :89-90.
  • 7D. -W. Chang. A matrix trace inequalities for products of Hermitian matrices [J]. J. Math. Anal. Appl. , 1999(237) :721-725.
  • 8I. D. Coope. On matrix trace inequalities and related topics for products of Hermitian matrix [J], J. Math. Anal. Appl. , 1994(188) 999-1 001.
  • 9X. Yang. A matrix trace inequality [J]. J. Math. Anal Appl. ,2000 (250): 372-374.
  • 10Y. Yang. A matrix trace inequality [J]. J. Math. Anal. Appl. ,1988 (133) :573-574.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部