期刊文献+

基于粗集和支持向量机的雷达信号识别法 被引量:2

Recognition method of radar signal based on rough set and support vector machine
下载PDF
导出
摘要 结合粗集的属性约简和支持向量机的分类机理,提出了一种融合算法。应用粗集理论的属性约简过程作为数据的预处理,把冗余的属性和冲突的对象从决策表中删去,却不损失任何有效信息;然后利用支持向量机进行分类识别。这样可以大大降低数据维数,减小支持向量机分类过程中的复杂度,在不同程度上避免了训练模型的过拟合现象,且分类性能更加优越。最后通过对雷达信号识别的仿真实例说明了上述方法的有效性。 A hybrid algorithm based on attribute reduction of rough set and classification principles of support vector machine(SVM) is presented.Firstly,the attribute reduction of rough set has been applied as preprocessor so that the redundant attributes and conflicting objects can be deleted from decision table but remaining efficient information lossless.Then,the classification and recognition based on SVM is realized.By this method,the dimension of data is reduced greatly,the complexity in process of SVM classification is decreased highly,and the over-fit of training model is prevented at some extent,so better classification performance can be obtained.Finally,the simulation experiment of radar signal recognition and its results show this combined method is effective.
作者 陈婷 严晓兰
出处 《航天电子对抗》 2010年第6期35-37,51,共4页 Aerospace Electronic Warfare
  • 相关文献

参考文献4

二级参考文献26

  • 1刘斌,张楠.基于LS-SVM的在线文本识别方法[J].微电子学与计算机,2009,26(3):192-194. 被引量:2
  • 2叶菲,罗景青,俞志富.一种改进的并行处理SVM学习算法[J].微电子学与计算机,2009,26(2):40-43. 被引量:6
  • 3苏金树,张博锋,徐昕.基于机器学习的文本分类技术研究进展[J].软件学报,2006,17(9):1848-1859. 被引量:386
  • 4方景龙,陈铄,潘志庚,梁荣华.复杂分类问题支持向量机的简化[J].电子学报,2007,35(5):858-861. 被引量:9
  • 5Jiawei Han, Kambr M. Data Mining: concepts and Techniques [M ]. New Zealand: Morgan Kaufmann Publishers,2000;北京:高等教育出版社,2001.
  • 6Swiniarski R, Skowron A. Rough set methods in feature selection and extraction [J].Pattern Recognition Letters, 2003,24(6) : 833-849.
  • 7Pawlak Z,Skowron A. Rough sets and Boolean reasoning [J]. Information Sciences, 2007,177(1) : 41-73.
  • 8Hu X,Cercone N. Discovering maximal generalized decision rules through horizontal and vertical data reduction [J]. Computational Intelligence, 2001,17(4) : 685-702.
  • 9Cooper W.Some Inconsistencies and Misnomers in Probabilistic Information Retrieval[C]//Proc of the Int'l ACM SIGIR Conf on Research and Development in Information Retrieval,1991:57-61.
  • 10Lewis D D.Naive (Bayes) at Forty:The Independence Assumption in Information Retrieval[C]//Proc of the 10th European Conf on Machine Learning,1998:4-18.

共引文献40

同被引文献7

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部