期刊文献+

半线性对流占优Sobolev方程的H^1-Galerkin混合有限元方法

H^1-Galerkin Mixed Finite Element Method for Semilinear Convection-dominated Sobolev Equation
下载PDF
导出
摘要 利用H1-Galerkin混合有限元方法研究了一维半线性对流占优Sobolev方程,得到了半离散解的最优阶误差估计,该方法的优点是不需验证LBB相容性条件。 H1-Galerkin mixed finite element methods are used for semi linear convection-dominated sobolev equations.Optimal order error estimates are obtained for the semi-discrete solutions.The main feature of this method is that the approximations have the same rate convergence as in the classical mixed finite element methods without the LBB consistency conditions.
作者 曹京平
出处 《贵阳学院学报(自然科学版)》 2010年第4期25-28,共4页 Journal of Guiyang University:Natural Sciences
基金 内蒙古教育厅自然科学基金资助项目(NJzy08110)
关键词 半线性 对流占优 SOBOLEV方程 混合有限元方法 Sobolev Equation 最优阶误差估计 相容性条件 方法研究 离散解 一维 验证 Convection-dominated Sobolev equation Semilinear H1-Galerkin mixed finite element methods optimal order error estimate
  • 相关文献

参考文献4

二级参考文献30

  • 1郭会.对流占优Sobolev方程的最小二乘Galerkin有限元法[J].高等学校计算数学学报,2005,27(4):328-337. 被引量:8
  • 2王瑞文.双曲型积分微分方程H^1-Galerkin混合元法的误差估计[J].计算数学,2006,28(1):19-30. 被引量:50
  • 3袁益让 王宏.非线性双曲型方程有限元方法的误差估计[J].系统科学与数学,1985,5(3):161-171.
  • 4J.Cannon,Y.Lin,Non-classical H1 projection and Galerkin methods for nonlinear parabolic integro-differential equations,Calcolo,25 (1998),187-201.
  • 5J.Douglas,R.E.JR.Dupont and M.F.Wheeler,H1-Galerkin methods for the Laplace and heat equations,Mathematical Aspect of Finite Elements in Partial Differential Equations,C.de Boor,ed.Academic Press,New York,1975,383-415.
  • 6L.Douglas Lr,J.E.Roberts,Global estimates for mixed methods for second order elliptec equations,Math.Comp,444(1985),39-52.
  • 7E.J.Park,Mixed finite elemtnt method for nonlinear second-orderelliptic problems,SIAM J Numer.Anal,32 (1995),865-885.
  • 8P.A.Raviart and J.M.Thomas,A mixed finite element method for second order elliptic problems,Lecture Notes in Math.606,Springer,Brelin,1977,292-315.
  • 9C.Johnson and V.Thomee,Error estimates for some mixed finite element methods for parabolic type problems,Rairo Numer.Anal,15 (1981),41-78.
  • 10J.Squeff,Superconvergence of mixed finite element methods for parabolic equations,V^2 AN,21 (1987),327-352.

共引文献72

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部