摘要
应用半解析方法,研究了直圆柱位形下等离子体压强P0分别为P0=0、P0=常数和P0=f(r)时Line-tied扭曲不稳定性的增长率和二维径向本征函数的演化规律。结果表明,P0=0和P0=常数时的轴向波数k的范围相同,但P0=常数时的增长率比P0=0时的小。P0=f(r)时的轴向波数k的范围和增长率则都比P0=0时的大,同时磁流体的速度变化也较大。因此,P0=f(r)更接近实际的物理模型(例如日冕的喷射问题)。
The evolution of growth rate and two-dimensional radial eigenfunction of line-tied kink instability in cylindrical geometry is studied by using semi-analytical method for the three cases of,const and respectively.The ranges of axial wave number are same for the two cases of and const,and the growth rate of const is less than that of.The ranges of axial wave number and growth rate of are greater than that of,and the magneto-hydrodynamic(MHD) velocity has a great change.Therefore,the case of is closed to the actual physical model(for example,the coronal mass ejections).
出处
《核聚变与等离子体物理》
CAS
CSCD
北大核心
2010年第4期306-311,共6页
Nuclear Fusion and Plasma Physics
基金
国家自然科学面上基金(10875024)
科技部ITER计划专项国内配套研究2009年度项目(2009GB105004)
辽宁省高等学校科研项目计划(2008S059)