期刊文献+

等离子体压强对Line-tied扭曲不稳定性增长率和本征函数的影响 被引量:9

Effect of the plasma pressure on growth rate and eigenfunction of line-tied kink instability
下载PDF
导出
摘要 应用半解析方法,研究了直圆柱位形下等离子体压强P0分别为P0=0、P0=常数和P0=f(r)时Line-tied扭曲不稳定性的增长率和二维径向本征函数的演化规律。结果表明,P0=0和P0=常数时的轴向波数k的范围相同,但P0=常数时的增长率比P0=0时的小。P0=f(r)时的轴向波数k的范围和增长率则都比P0=0时的大,同时磁流体的速度变化也较大。因此,P0=f(r)更接近实际的物理模型(例如日冕的喷射问题)。 The evolution of growth rate and two-dimensional radial eigenfunction of line-tied kink instability in cylindrical geometry is studied by using semi-analytical method for the three cases of,const and respectively.The ranges of axial wave number are same for the two cases of and const,and the growth rate of const is less than that of.The ranges of axial wave number and growth rate of are greater than that of,and the magneto-hydrodynamic(MHD) velocity has a great change.Therefore,the case of is closed to the actual physical model(for example,the coronal mass ejections).
出处 《核聚变与等离子体物理》 CAS CSCD 北大核心 2010年第4期306-311,共6页 Nuclear Fusion and Plasma Physics
基金 国家自然科学面上基金(10875024) 科技部ITER计划专项国内配套研究2009年度项目(2009GB105004) 辽宁省高等学校科研项目计划(2008S059)
  • 相关文献

参考文献30

二级参考文献26

  • 1何宏达,张锦华,董家齐,李强.Study of Plasma MHD Equilibrium in HL-2A Tokamak[J].Plasma Science and Technology,2006,8(4):397-401. 被引量:1
  • 2Smith D L. Blanket comparison and selection study [J]. Fusion Technology, 1985, 8: 10.
  • 3Pampin R, Karditsas P J. Fusion power plant performance analysis using the HERCULES code [J]. Fusion Engineering and Design, 2006, 81 : 1231.
  • 4Pint B A, Moser J L, Tortorelli P F. Liquid compatibility issues for test blank modules [J]. Fusion Engineering and Design, 2006, 81: 901.
  • 5Wu Y, Zheng S, Zhu X, et al. Conceptual design of the fusion-driven subcritical system FDS-Ⅰ [J]. Fusion Engineering and Design, 2006, 81, 1305.
  • 6Smolentsev Sergey, Morley Neil, Abdou Mohamed. Code development for analysis of MHD pressure drop reduction in a liquid metal blanket using insulation recbnique based on a fully developed flow model [J]. Fusion Engineering and Design, 2005, 73: 83.
  • 7Smolentsev S, Abdou M, Morley N B, et al. Numerical analysis of MHD flow and heat transfer in a poloidal channel of the DCLL blanket with a SiCf/SiC flow channel insert [J]. Fusion Engineering and Design, 2006, 81 : 549.
  • 8Xu Zengyu, Pan Chuanjie, Wei Wenhao, et al. Experimental investigation and theoretical analysis two dimensional MHD effects in rectangular duct [J]. Fusion Technology, 1999, 36: 47.
  • 9Favez J Y, Lister J B, Bonvin D, et al. Enhancing the control of tokamaks via a continuous nonlinear control law ID]. No. 3034, Ecole Polytechnique Feterale de Lausanne, Switzerland, 2004.
  • 10Jardin S C, Bell M G, Pomphrey N. TSC simulation of ohmic discharges in TFTR [J]. Nucl. Fusion, 1993, 33(3): 371-382.

共引文献22

同被引文献70

  • 1朱希睿,孟续军.中低温稠密等离子体电子压强的自洽场计算[J].高压物理学报,2004,18(4):333-338. 被引量:3
  • 2Mok Y,Hoven G V.Resistive Magnetic Tearing in a FiniteLength Pinch[J].Phys Fluids,1982,25(4):636-642.
  • 3Raadu M A.Suppression of the Kink Instability for MagneticFlux Ropes in the Chromosphere[J].Sol Physics,1972,22:425-433.
  • 4Furno I,Intrator T P,Ryutov D D,et al.Curren-t Driven Ro-tating-Kink Mode in a Plasma Column with a Non-Line-TiedFree End[J].Phys Rev Lett,2006,97(1):015002-1-4.
  • 5Meier D L,Koide S,UchidaY.Magnetohydrodynamic Produc-tion of Relativistic Jets[J].Science,2001,291:84-92.
  • 6Li H,Lapenta G,Finn J M,et al.Modeling the Large ScaleStructures ofAstrophysical Jets in theMagnetically DominatedLimit[J].The Astrophysical Journal.2006,643:92-100.
  • 7Longbottom A W,Rickard G J,Craig I J D,et al.MagneticFlux Braiding Force-Free Equilibria and Current Sheets[J].The Astrophysical Journal,1998,500:471-482.
  • 8贝特曼.磁流体力学不稳定性[M].北京:原子能出版社,1982:115.
  • 9徐学桥,霍裕平.托卡马克中宏观束-等离子体扭曲模不稳定性研究[J].物理学报,1986,35(10):1259-1270.
  • 10Evstatiev E G,Delzanno G L,Finn J M.A New Method forAnalyzing Line-Tied Kink Modes in Cylindrical Geometry[J].Phys Plasmas,2006,13(7):072902-1-13.

引证文献9

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部