期刊文献+

关于Bézier三角曲面的保凸条件

Some conditions of convexity for Bernstein-Bézier surfaces over triangles
下载PDF
导出
摘要 讨论了Bézier三角曲面保凸的充分条件.为了简化B网弱凸的3个条件,对文献[周昌政.对函数Bézier三角片凸性条件的推广.应用数学与计算数学学报,1991,5(2):87-91]提出的Bézier三角曲面的保凸条件做了进一步改进.在此基础上,将条件转化为一个无穷保凸区域.在该区域内,利用分段线性插值方法得到Bézier三角曲面保凸的线性充分条件.实例表明,该方法在几何造型中是可行、有效的. The conditions of convexity for Bernstein-Bézier surfaces over triangles were discussed.In order to simplify B-nets weak convex conditions,the convexity preserving conditions of Bézier triangle surfaces in Ref.[Zhou Changzheng.The extension of the conditions of convexity for Bernstein-Bézier surfaces over triangles.Communication on Applied Mathematics and Computation,1991,5(2):87-91]were further improved.On this basis,the conditions were put into an infinite convexity preserving area.In this area,using piecewise linear interpolation method,some Bézier triangle surface convexity preserving linear sufficient conditions were obtained.Examples show that the proposed methods are feasible and effective in geometric modeling.
出处 《中国科学技术大学学报》 CAS CSCD 北大核心 2010年第12期1230-1235,共6页 JUSTC
基金 国家自然科学基金(60773043) 安徽省高校优秀青年人才基金(2009SQRZ008) 合肥工业大学博士专项基金(2010HGBZ0563) 合肥工业大学科学研究发展基金(2010HGXJ0084 2010HGXJ0204)资助
关键词 Bézier三角曲面 B网 凸性 充分条件 Bernstein-Bézier surfaces over triangles Bézier nets convexity sufficient condition
  • 相关文献

参考文献10

  • 1周昌政.对函数Bézier三角片凸性条件的推广[J].应用数学与计算数学学报,1991,5(2):87-91. 被引量:1
  • 2Zhang Yunfeng,Duan Qi,Twizell E H.Convexity control of a bivariate rational interpolating spline surfaces. Computers and Graphics . 2007
  • 3Li Aidi.Convexity preserving interpolation. Computer Aided Geometric Design . 1999
  • 4Hu Qianqian,Wang Guojin.Optimal multi-degree reduction of triangular Bézier surfaces with corners continuity in the norm L2. Journal of Computational and Applied Mathematics . 2008
  • 5Xu Huixia,Wang Guojin.Approximating rational triangular Bézier surfaces by polynomial triangular Bézier surfaces. Journal of Computational and Applied Mathematics . 2009
  • 6Chang G Z,Feng Y Y.An improved condition for the convexity of Bernstein-Bézier surfaces over triangles. Computer Aided Geometric Design . 1984
  • 7Chang G Z,Feng Y Y.A new proof for the convexity of Bemstein-Bézier surfaces over triangles. Chinese Annals of Mathematics . 1985
  • 8Lai M J.Some sufficient conditions for convexity of multivariate Bemstein-Bézier polynomials and box spline surfaces. Studia Scientiarum Mathematicarum Hungarica . 1990
  • 9Carnicer J M,Floater M S,Pefia J M.Linear convexity conditions for rectangular and triangular Bernstein-Bézier surfaces. Computer Aided Geometric Design . 1997
  • 10Chang G,Davis P J.The convexity of Bernstein polynomials over triangles. Journal of Approximation Theory . 1984

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部