摘要
讨论了Bézier三角曲面保凸的充分条件.为了简化B网弱凸的3个条件,对文献[周昌政.对函数Bézier三角片凸性条件的推广.应用数学与计算数学学报,1991,5(2):87-91]提出的Bézier三角曲面的保凸条件做了进一步改进.在此基础上,将条件转化为一个无穷保凸区域.在该区域内,利用分段线性插值方法得到Bézier三角曲面保凸的线性充分条件.实例表明,该方法在几何造型中是可行、有效的.
The conditions of convexity for Bernstein-Bézier surfaces over triangles were discussed.In order to simplify B-nets weak convex conditions,the convexity preserving conditions of Bézier triangle surfaces in Ref.[Zhou Changzheng.The extension of the conditions of convexity for Bernstein-Bézier surfaces over triangles.Communication on Applied Mathematics and Computation,1991,5(2):87-91]were further improved.On this basis,the conditions were put into an infinite convexity preserving area.In this area,using piecewise linear interpolation method,some Bézier triangle surface convexity preserving linear sufficient conditions were obtained.Examples show that the proposed methods are feasible and effective in geometric modeling.
基金
国家自然科学基金(60773043)
安徽省高校优秀青年人才基金(2009SQRZ008)
合肥工业大学博士专项基金(2010HGBZ0563)
合肥工业大学科学研究发展基金(2010HGXJ0084
2010HGXJ0204)资助
关键词
Bézier三角曲面
B网
凸性
充分条件
Bernstein-Bézier surfaces over triangles
Bézier nets
convexity
sufficient condition