摘要
针对经典去噪模型易造成图像细节丢失以及确定性算法无法自动估计去噪过程中的未知参数等问题,提出一种新的图像去噪算法.该算法在贝叶斯框架下,用总变分模型(TV)和伽马分布分别刻画原始图像及未知参数的统计特征,并基于最大联合分布的推导,估计最优原始图像.总变分模型使最终的能量泛函非线性且不可微分,因此,引入迭代重加权最小二乘法(IRLS),通过迭代的方式用加权的L2范数逼近L1范数来表示图像的统计模型.实验结果表明,该算法可有效去除图像的噪声,提升去噪速度,使所恢复的图像在实际视觉效果和信噪比等方面均优于其他同类算法.
Aiming at such problems as the image detail loss caused by classical denoising models and the unable estimation of unknown parameters in denoising process by deterministic algorithms,a new image denoising algorithm was proposed.The algorithm used the total variation model and Gamma distribution to depict the statistical characteristics of the original image and unknown parameters in Bayesian framework,respectively.The optimal original image was estimated through deriving the maximum joint distribution.Due t...
出处
《沈阳工业大学学报》
EI
CAS
2010年第6期693-698,共6页
Journal of Shenyang University of Technology
基金
国家自然科学基金资助项目(60573019)
广东省科技计划项目(2009B030803004)
广东省重点实验室开放基金项目(CCNL-200704)
广东省自然科学基金博士科研启动基金项目(07300561)
关键词
图像去噪
贝叶斯框架
最大联合分布
先验模型
总变分模型
拉普拉斯分布
数值计算
迭代重加权最小二乘法
image denoising
Bayesian framework
maximum joint distribution
prior model
total variation model
Laplace distribution
numerical calculation
iteratively reweighted least squares method