期刊文献+

生物过程的数学方法

Mathematic methods of biological process.
下载PDF
导出
摘要 生物信息学的研究内容分为两类:研究生物在细胞和分子水平的静态特征下的静态问题,和研究这些静态特征的动态演化规律的动态问题,并称后一类问题为生物过程。这两类问题在数学方法上的主要区别是:前者以寻找和设计高效的算法为主;后者主要是建立生物过程的数学模型,以便模拟和分析。综述了生物过程数学建模的三种主要方法:微分方程方法,贝叶斯网和概率布尔网络方法,以及进程代数方法。最后对这几种方法进行讨论。 Research within bioinformatics is classified into two categories,one is static biological problem to do research at cell and molecule level,the other,which is called biological process,is dynamic biological prob- lem to research dynamic evolvement of these static characters.A main mathematical approach of the former is to find efficient algorithms,whereas it of the latter is to give mathematic model to simulate and analyze bio- logical process.Three mathematic models,differential equation,Bayesian networks and process algebra,are sur- veyed and discussed from the view of biological process.
出处 《计算机科学与探索》 CSCD 2007年第1期17-38,共22页 Journal of Frontiers of Computer Science and Technology
基金 (国家自然科学基金)No.60496324 60673016 60603002 (国家高技术研究发展计划(863))No.2001AA113130 (国家重点基础研究发展规划(973))No.2001CB312004~~
  • 相关文献

参考文献4

  • 1王士同,修宇.基于模型的基因表达聚类分析技术研究进展[J].江南大学学报(自然科学版),2006,5(3):374-378. 被引量:5
  • 2Larisa Vatov,Ziv Kizner,Eytan Ruppin,Sigal Meilin,Tamar Manor,Avraham Mayevsky. Modeling Brain Energy Metabolism and Function: A Multiparametric Monitoring Approach[J] 2006,Bulletin of Mathematical Biology(2):275~291
  • 3Aniruddha Datta,Ashish Choudhary,Michael L. Bittner,Edward R. Dougherty. External Control in Markovian Genetic Regulatory Networks[J] 2003,Machine Learning(1-2):169~191
  • 4David Heckerman,Dan Geiger,David M. Chickering. Learning Bayesian Networks: The Combination of Knowledge and Statistical Data[J] 1995,Machine Learning(3):197~243

二级参考文献24

  • 1Schena M,Shalon D,Heller R,et al.Parallel human genome analysis:microarray-based expression monitoring of 1000 genes[J].PNAS,1996,93:10614-10619.
  • 2Brown P,Botstein D.Exploring the new world of the genome with DNA microarrays[J].Nature Genetics,1999,21:33-37.
  • 3Eisen M,Spellman P,Brown P,et al.Parallel human genome alalysis:cluster analysis and display of genome-wide expression patterns[J].PNAS,1998,95:14863-14868.
  • 4Tamayo P,Slonim D,Mesirov J,et al.Interpreting patterns of gene expression with self-organizing maps:methods and applications to hematopoietic differentiation[J].PNAS,1999,96:2907-2912.
  • 5Tavazoie S,Hughes J D,Campbell M J,et al.System-atic determination of genetic network architecture[J].Nature Genetics,1999,22:281-285.
  • 6Brown P S,Grund Y.Knowledge-based analysis of microarray gene expression data using support vector machines[J].PNAS,2000,97:262-267.
  • 7Yeung K Y,Raley C,Murua A,et al.Model-based clustering and data transformations for gene expression data[J].Bioinformatics,2001,17(10):977-987.
  • 8Dhllon I S,Marcotte E M,Roshan U.Diametrical clustering for identifying anti-correlated gene clusters[J].Bioinformatics,2003,19:1612-1619.
  • 9Shannon W,Culverhouse R,Duncan J.Analyzing microarray data using cluster analysis[J].Pharmacogenomics,2003,4(1):41-52.
  • 10JIANG Daxin,TANG Chun,ZHANG Aidong.Cluster analysis for gene expression data:a survey[J].IEEE Transactions on Knowledge and Data Engineering,2004,16(11):1370-1386.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部