期刊文献+

一种实时监控最近邻的近似算法

An approximate approach to monitoring nearest neighbors in real time
下载PDF
导出
摘要 处理分布式环境下高速数据的最大挑战在于如何利用少量网络资源输出高质量的查询结果。对面向分布式环境的最近邻查询问题进行了研究,提出了一种基于过滤器的新方法,不仅能计算精确查询结果,还能够处理五类近似查询。该方法在各个远程站点均安装了智能过滤器,并通过合理设置过滤器的范围来降低数据传输量。理论分析及基于模拟数据集合和真实数据集合的实验报告均表明新方法具有较高的性能。 The biggest challenge to processing high-speed data over distributed environment is to output qualified results by using small amount of network resource. The paper studies how to cope with nearest neighbors query over distributed environment and proposes a novel solution, which is capable of answering not only precise query, but also five kinds of approximate queries. After installing a Smart Filter in each remote site to filter parts of incoming data, the novel approach continuously adjusts the range monitored by each filter to reduce the overall communication cost. Theoretic analysis and experimental results based on synthetic datasets and real dataset indicate that new approach owns good performance.
出处 《计算机科学与探索》 CSCD 2007年第2期146-159,共14页 Journal of Frontiers of Computer Science and Technology
基金 the Key Project of National Natural Science Foundation of China under Grant No.6049325 6049327(国家自然科学基金重大项目).
  • 相关文献

参考文献2

  • 1金澈清,钱卫宁,周傲英.流数据分析与管理综述[J].软件学报,2004,15(8):1172-1181. 被引量:161
  • 2Mohammad R. Kolahdouzan,Cyrus Shahabi. Alternative Solutions for Continuous K Nearest Neighbor Queries in Spatial Network Databases[J] 2005,GeoInformatica(4):321~341

二级参考文献52

  • 1Babcock B, Babu S, Datar M, Motwani R, Widom J. Models and issues in data streams. In: Popa L, ed. Proc. of the 21st ACM SIGACT-SIGMOD-SIGART Symp. on Principles of Database Systems. Madison: ACM Press, 2002. 1~16.
  • 2Terry D, Goldberg D, Nichols D, Oki B. Continuous queries over append-only databases. SIGMOD Record, 1992,21(2):321-330.
  • 3Avnur R, Hellerstein J. Eddies: Continuously adaptive query processing. In: Chen W, Naughton JF, Bernstein PA, eds. Proc. of the 2000 ACM SIGMOD Int'l Conf. on Management of Data. Dallas: ACM Press, 2000. 261~272.
  • 4Hellerstein J, Franklin M, Chandrasekaran S, Deshpande A, Hildrum K, Madden S, Raman V, Shah MA. Adaptive query processing: Technology in evolution. IEEE Data Engineering Bulletin, 2000,23(2):7-18.
  • 5Carney D, Cetinternel U, Cherniack M, Convey C, Lee S, Seidman G, Stonebraker M, Tatbul N, Zdonik S. Monitoring streams?A new class of DBMS applications. Technical Report, CS-02-01, Providence: Department of Computer Science, Brown University, 2002.
  • 6Guha S, Mishra N, Motwani R, O'Callaghan L. Clustering data streams. In: Blum A, ed. The 41st Annual Symp. on Foundations of Computer Science, FOCS 2000. Redondo Beach: IEEE Computer Society, 2000. 359-366.
  • 7Domingos P, Hulten G. Mining high-speed data streams. In: Ramakrishnan R, Stolfo S, Pregibon D, eds. Proc. of the 6th ACM SIGKDD Int'l Conf. on Knowledge Discovery and Data Mining. Boston: ACM Press, 2000. 71-80.
  • 8Domingos P, Hulten G, Spencer L. Mining time-changing data streams. In: Provost F, Srikant R, eds. Proc. of the 7th ACM SIGKDD Int'l Conf. on Knowledge Discovery and Data Mining. San Francisco: ACM Press, 2001. 97~106.
  • 9Zhou A, Cai Z, Wei L, Qian W. M-Kernel merging: Towards density estimation over data streams. In: Cha SK, Yoshikawa M, eds. The 8th Int'l Conf. on Database Systems for Advanced Applications (DASFAA 2003). Kyoto: IEEE Computer Society, 2003. 285~292.
  • 10Gibbons PB, Matias Y. Synopsis data structures for massive data sets. In: Tarjan RE, Warnow T, eds. Proc. of the 10th Annual ACM-SIAM Symp. on Discrete Algorithms. Baltimore: ACM/SIAM, 1999. 909-910.

共引文献160

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部