期刊文献+

权重不同参与者之间的多重秘密广义门限方案 被引量:1

Generalized threshold multi-secret sharing scheme among weighted participants
下载PDF
导出
摘要 在秘密共享案中,一般集中于Shamir(n,t)门限秘密共享方案的研究。文章给出具有特殊权限的参与者权重不同的(m+n1+…+nl,(t+t1+…+tl)l个)门限秘密共享方案,它们是(m+n,t+1)门限秘密共享方案的推广形式。同时,考虑了多重秘密共享,即通过一次秘密共享过程就可实现对任意个秘密的共享,而参与者秘密份额的长度仅为一个秘密的长度。基于中国剩余定理给出具有特殊权限的且参与者具有不同权重的(m+n1+…+nl,(t+t1+…+tl)l个)门限多重秘密共享方案。 Generally, people just research on Shamir(n,t) threshold secret sharing scheme. The authors will show(m+n1+…+nl,(t+t1+…+tl)l个) threshold secret sharing scheme among weighted participants of special access right, which is a generalized scheme of (m+n,t+1) threshold secret sharing. The authors pay attention to multi-secret, that is, multiple secrets can be shared in one sharing session, and will give(m+n1+…+nl,(t+t1+…+tl)l个) threshold multi-secret sharing scheme among weighted participants based on CRT of special access right.
出处 《计算机科学与探索》 CSCD 2007年第2期228-233,共6页 Journal of Frontiers of Computer Science and Technology
基金 the National Grand Fundamental Research 973 Program of China under Grant No.G2004CB318000( 国家重点基础研究发展规划(973) ).
关键词 权重 秘密共享方案 多重秘密共享 门限 推广形式 剩余定理 权限 秘密份额 共享过程 长度 中国 special access right threshold secret sharing multi-secret weighted Chinese Remainder Theorem
  • 相关文献

参考文献3

二级参考文献21

  • 1[1]G.R Blakey. Safeguarding Cryptographic Keys. Proc. NCC, AFIPS Press, Montvale, 1979,48: 313-317.
  • 2[2]G. R. Blakely and C. Meadows. Security of Ramp Schemes, Crypto'84, Lecture Notes inComputer Sciences 196, pp411-431.
  • 3[3]R. M. Capocelli, A. De Santis, L. Garganos etc. On the Size of Shares for Secret Sharing Schemes[J]. Journal of Cryptology,Vol.6, 1993, 157-167.
  • 4[4]J. Gathen and J. Gerharad, Modern Computer algebra[M]. Cambridge university press, 1999.
  • 5[5]J. He and E. Dawson. Shared Secret Reconstruction, Designs, Codes and Cryptography, 14, 221-237 (1998).
  • 6[6]John D. Lipson. Chinese Remainder and Interpolation algorithm, Proceedings of ACM Symposium on Symbolic and Algebraic Computation[M]. ACM Press, 1971.372-391.
  • 7[7]C. Padro,G. Saez, and J. Villar. Detection of Cheaters in Vector Space Secret Sharing Schemes,Designs,Codes and Cryptography.16, 75-85 (1999).
  • 8[8]A. Shamir. How to share a secret[J]. Communication of ACM, 1979,22: 612-613.
  • 9[9]G. J. Simmons. An introduction to shared secret/or shared control schemes and their applications, Contemporary Cryptology:The science of information integrity. IEEE Press,1992. 441-497.
  • 10[10]D. R. Stinson. Cryptography: Theory and Practice[M]. CRC Press, 1995.

共引文献55

同被引文献5

  • 1Shamir A.How to share a secret[S].Communications of ACM,1979,22(11):612-613.
  • 2李滨.基于特殊访问权限的差分秘密共享方案.北京电子科技学院学报,2005,13(1):1-8.
  • 3刘焕平 杨义先.关于(k;n)-门限方案的进一步讨论.通信保密,1998,73(1):51-54.
  • 4杨义先.MDS码在保密学中的应用[J].北京邮电学院学报,1988,11(1):30-35.
  • 5刘焕平,杨义先.广义(k,n)-门限方案[J].通信学报,1998,19(8):72-77. 被引量:13

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部