期刊文献+

数学竞赛中的几何定值问题

原文传递
导出
摘要 在几何问题中,常有一些题涉及到动点、动直线或动圆,并求证与之相关的线段之间的和、差、积、商为定值,或证角与角之间的数量不变性,等等.这类问题通常是指平面几何中的定值问题.对于求定值、定点的问题,通常先用特殊条件(极端化)确定这个定值、定点,然后再来证明所得的结果.例1 (第18届加拿大数学奥林匹克试题)如图1, 定长的弦ST在一个以AB为直径的半圆周上滑动,M是 ST的中点,P是S对AB作垂线的垂足.求证:不管ST滑到什么位置, ∠SPM是一定角.
作者 张志刚
出处 《数理化学习(初中版)》 2006年第2期3-7,共5页
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部