期刊文献+

哪种解法正确

原文传递
导出
摘要 题目如图如图,在一个半径是R,质量是M的均匀球体中,紧贴球的边缘挖去一个半径为R/2的球形空穴后,对位于球心和空穴中心连线上,与球心相距d的质点m的引力是多大? 解法1 将整个球体对质点的引力看成是挖去的小球体和剩余部分对质点的引力的和,即可得解,完整的均匀球体对球外质点m的引力F=GMm/d2.挖去的均匀球体对质点的引力F'=GM'm/(d-R/2)2,所以剩余部分对小球m的引力为F"=F-F'=GMm/d2-GM'm/(d-R/2)2,半径为R/2的球的质量M'=4/3π(R/2)3·ρ=1/8M.则F'=GM'm/(d-R/2)2=GMm/8(d-R/2)
作者 吕问友
机构地区 四川省中江中学
出处 《数理化学习(高中版)》 2002年第5期28-29,共2页
关键词 均匀球体
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部