期刊文献+

灌注式RCCS生物反应器CFD模拟分析微载体旋转对细胞氧供的影响

Stimulation Analysis of Perfusion Rotary Cell Culture System Bioreactors with Computational Fluid Dynamic Software
下载PDF
导出
摘要 目的:探讨利用微重力旋转细胞培养系统(RCCS)生物反应器仿真模拟分析微载体旋转对细胞氧供的影响。方法:联立不可压缩牛顿流体连续性方程和动量守恒方程、微载体内以及流动空间中氧的传递和反应方程,设置参数并求解;以Gamb it建立RCCS网格模型,并用F luent软件在欧拉多相模式下进行生物反应器数值模拟及流体力学分析。结果:以微载体直径及RCCS旋转速度作为自变量,基于欧拉-欧拉多相模型和氧运输公式成功建立RCCS数值分析模型。微载体直径和旋转速度均影响细胞培养效率,直径200、300、400μm的微载体旋转速度分别为10、12、14 r/m in;旋转1 h后直径600μm的微载体RCCS中间区平均氧浓度增加85%。结论:CFD可以定量模拟分析影响微载体及氧供的相关因素,为优化培养条件提供参数。 Objective To simulate the rotary cell culture system(RCCS) liver bioreactor model with computational fluid dynamic(CFD) software and to analyze the characteristic of nutrition supply.Methods A numerical analysis of the RWV bioreactor was conducted by incorporating the Eulerian-Eulerian multiphase and oxygen transport equations.The bead type,size and rotating speed were the control variables in the calculations.Results The present results showed that the rotating speed for appropriate suspensions should to be increased as the size of the bead/cell increasing:10 r/min for 200 μm;12 r/min for 300 μm.As the rotating speed and the bead size increasing from 10 r/min(200 μm) to 18 r/min/(600 μm),the mean oxygen concentration in the 80% midzone of the vessel was increased to 85% after 1 hour rotation due to the high convective flow for 18 r/min(600 μm) case as compared to 10 r/min(200 μm) case.Conclusion The present results may serve as criteria to set the operating parameters for a RWV bioreactor,it might provide a design parameter for an advanced suspension bioreactor for 3D engineered cell and tissue culture.
出处 《湖北医药学院学报》 CAS 2011年第4期360-363,共4页 Journal of Hubei University of Medicine
基金 国家863高技术发展计划资助(2006AA02A141)
关键词 微重力旋转培养系统(RCCS) 生物反应器 CFD软件 Rotary cell culture system Bioreactor Computational fluid dynamics software
  • 相关文献

参考文献14

  • 1刘兴茂,刘红,熊福银,陈昭烈.模拟微重力条件下心肌细胞的体外三维固定化培养[J].中国生物工程杂志,2003,23(5):91-94. 被引量:6
  • 2M hler L,Flockerzi D,Sann H,et al.Mathematicalmodel of influenza A virus production in large-scale mi-crocarrier culture. Biotechnology and Bioengineering . 2005
  • 3Ge L,Ratcliffe M.The use of computational flowmodel-ing(CFD)to determine the effect of left ventricularshape on blood flow in the left ventricle. The Annals of Thoracic Surgery . 2009
  • 4Chen G,Palmer AF.Hemoglobin-based oxygen carrierand convection enhanced oxygen transport in a hollowfiber bioreactor. Biotechnology and Bioengineering . 2009
  • 5Sullivan JP,Palmer AF.Targeted oxygen delivery withinhepatic hollow fiber bioreactors via supplementation ofhemoglobin-based oxygen carriers. Biotechnology Progress . 2006
  • 6Als-Nielsen B,Gluud LL,Gluud C.Nonabsorbable disaccharides for hepatic encephalopathy. Cochrane Database of Systematic Reviews . 2004
  • 7POLLACK S R,MEANEY D F,LEVI NE E M,et al.Nu-merical model and experi mental validation of microcarrier mo-tionin a rotating bioreactor. Tissue Engineering . 2000
  • 8Wang Y,Yan L.CFD Studies on Biomass Thermochemical Conversion. Int J Mol Sci . 2008
  • 9Shi LI,Zhaofeng MA,Zhongying NIU,et al.NASA-approvedrotary bioreactor enhances proliferation and osteogenesis of hu-man periodontal ligament stem cells. Stem Cells and Development . 2009
  • 10Consolo F,Fiore GB,Truscello S,et al.A computational model for the optimization of transport phenomena in a rotating hollow-fiber bioreactor for artificial liver. Tissue Eng Part C Methods . 2009

二级参考文献8

  • 1Langer R S, Vaeanti T P. Tissue engineering. Science, 1993,260:920 ~ 925.
  • 2Li R K, Yau T M, Weisel R D, et al. Construction of bioengineering cardiac graft.J Torac Cardiovasc Surg,2000,119(2) :366 ~ 375.
  • 3Molnar G, Schroedl N A, Gonda S, et al. Skeletal muscle satellite cells cultured in simulated microgravity. In Vitro Cell Dev. Biol.Anim. 1997,33(5) :386 ~ 342.
  • 4Goodwin T J,Prewett T L,Wolf D A,et al. Reduced shear stress:a major component in the ability of mammalian tissues to form three-dimensional assemblies in simulated microgravity. J Cell Biochem,1993,51(4) :301 ~ 311.
  • 5Freed L E, Vunjak-Novakovic G, Langer R. Cultivation of cell-polymer cartilage implants in bioreaetors.J Cell. Biochem, 1993,51(6) :257 ~ 263.
  • 6Harding S E, Davies C H, Wynne D G, et al. Contractile function and response to agonists in myocytes from failing human heart. Eur Heart J,1994,15(3) :35 ~ 41.
  • 7Freed L E, Vunjak-Novakovic G. Microgravity tissue engineering. In Vitro Cell Dev Biol, 1997,33(5) :381 ~ 385.
  • 8Akins R E, Boyce R A, Madonna M L, et al. Cardiac organogenesis in vitro: Reestablishment of three-dimensional tissue architecture and function by dissociated ventricular cells. Tissue Engineering,1999,5(2) : 103 ~ 109.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部