期刊文献+

ANALYSIS OF LIMIT CYCLES TO A PERTURBED INTEGRABLE NON-HAMILTONIAN SYSTEM

ANALYSIS OF LIMIT CYCLES TO A PERTURBED INTEGRABLE NON-HAMILTONIAN SYSTEM
原文传递
导出
摘要 Bifurcation of limit cycles to a perturbed integrable non-Hamiltonian system is investigated using both qualitative analysis and numerical exploration.The investigation is based on detection functions which are particularly effective for the perturbed integrable non-Hamiltonian system.The study reveals that the system has 3 limit cycles.By the method of numerical simulation,the distributed orderliness of the 3 limitcycles is observed,and their nicety places are determined.The study also indicates that each of the 3 limit cycles passes the corresponding nicety point. Bifurcation of limit cycles to a perturbed integrable non-Hamiltonian system is investigated using both qualitative analysis and numerical exploration.The investigation is based on detection functions which are particularly effective for the perturbed integrable non-Hamiltonian system.The study reveals that the system has 3 limit cycles.By the method of numerical simulation,the distributed orderliness of the 3 limitcycles is observed,and their nicety places are determined.The study also indicates that each of the 3 limit cycles passes the corresponding nicety point.
出处 《Annals of Differential Equations》 2012年第3期263-268,共6页 微分方程年刊(英文版)
基金 supported by the Natural Science Foundation of China(Grant No.11161038)
关键词 limit cycle integrable non-Hamiltonian system detection function numerical exploration limit cycle integrable non-Hamiltonian system detection function numerical exploration
  • 相关文献

参考文献10

  • 1赵育林.一类具有尖点环的三次Hamilton向量场的Abel积分[J].数学物理学报(A辑),2000,20(2):229-234. 被引量:2
  • 2李继彬,黄其明.BIFURCATIONS OF LIMIT CYCLES FORMING COMPOUND EYES IN THE CUBIC SYSTEM[J].Chinese Annals of Mathematics.1987(04)
  • 3Norton A.A Critical Set with Nonnull Image Has Large Hausdorff Dimension[].Transactions of the American Mathematical Society.1986
  • 4Li JB.Distribution of limit cycles of the planar cubic system[].Science in China Series A: Mathematics.1985
  • 5Nusse,H.E.,Yorke,J.A. Dynamics: Numerical explorations (Accompanying Computer Program Dynamics Coauthored by Eric J Kostelich) . 1998
  • 6X.C.Hong,B.Wu.Numerical study of limit cycles for three planar polynomial systems[].Proceedings of therd International Conference on Information Technology and Computer Science.2011
  • 7Z.R.Liu,T.F.Qian,J.B.Li.Detection function method and its application to a perturbed quintic Hamiltonian system[].ChaosSolitons&Fractals.2002
  • 8M.Y.Tang,X.C.Hong.Fourteen limit cycles in a cubic Hamiltonian system with nine-order perturbed term[].ChaosSolitons&Fractals.2002
  • 9X.C.Hong,Q.H.Qin.Limit cycle analysis on a cubic Hamiltonian system with quintic per-turbed terms[].International Mathematical Forum.2006
  • 10X.C.Hong,B.S.Tan.Bifurcation of limit cycles of a perturbed integrable non-Hamiltonian system[].Proceedings of theth International Workshop on Chaos-Fractal Theories and Appli-cations.2011

二级参考文献3

  • 1Zhao Yulin,Ann Mat Pure Appl,1999年,176卷,4期,251页
  • 2Zhao Yulin,J Diff Eqs,1999年,155卷,73页
  • 3Zhao Yulin,Ann Differ Equ,1998年,14卷,2期,434页

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部