期刊文献+

非晶Fe_(73.5)Cu_1Nb_3Si_(13.5)B_9合金激光纳米化的超精细结构研究 被引量:3

Hyperfine stucture during nanocrystallization of amorphous Fe_(73.5)Cu_1Nb_3Si_(13.5)B_9 alloy irradiated by laser
原文传递
导出
摘要 在CO2激光功率为50—300W、扫描速度为20mms、激光散光斑为20mm照射条件下,诱导非晶Fe73.5Cu1Nb3Si13.5B9带中发生结构重组,产生定量纳米αFe(Si)晶相形成双相组织结构材料.利用穆斯堡尔谱研究了非晶Fe73.5Cu1Nb3Si13.5B9合金激光纳米化的超精细结构.实验结果表明,激光诱导非晶Fe73.5Cu1Nb3Si13.5B9纳米化后,其超精细磁场的分布随着激光功率变化由单峰向双峰变化,在高功率辐照时,出现了双峰分布,并且峰位向高场移动.高激光功率辐照非晶Fe73.5Cu1Nb3Si13.5B9合金纳米晶化相有四种超精细结构,即2个超精细磁场较小的初晶相和2个超精细磁场较大的纳米晶化相.其中超精细磁场较大(17—25MAm)的αFe(Si)相为DO3结构. The material composed of a definite amount of nanocrystalline phase α-Fe(Si) with a double-phase structure was produced by laser irradiation on the amorphous Fe73.5Cu1Nb3Si13.5B9 alloy with a laser power ranging from 50 to 300W, scanning speed 20mm/s, laser beam spot 20mm. Hyperfine structures of the nanocrystallized samples were analyzed by Moessbauer spectra. Experimental result shows that after the CO2 laser irradiated on the amorphous alloy Fe73.5Cu1Nb3Si13.5B9 , its hyperfine magnetic field distribution transformed from a single peak to double peaks with the change of laser power. When irradiated at a high laser power, it formed a double-peak structure and the peaks moved to a high field position. Nanocrystallization of amorphous Fe73.5Cu1Nb3Si13.5B9 irradiated by a higher laser power produces four hyperfine structures, i.e. two primary crystal phases with relatively small hyperfine magnetic field and two nanocrystalline phases with a relatively large hyperfine magnetic field. The major crystal phase is the α-Fe(Si) phase of DO3 whose hyperfine magnetic field is comparatively larger (17-25MA/m).
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2005年第9期4157-4163,共7页 Acta Physica Sinica
基金 国家自然科学基金(批准号:50274028) 沈阳市科技计划项目(1032040-1-01)资助的课题.~~
关键词 激光 纳米晶α—Fe(Si) 非晶Fe73.5Cu1Nb3Si13.5B9超精细结构 超精细磁场 超精细结构 Fe73.5Cu1Nb3Si13.5B9合金 激光功率 结构研究 纳米化 非晶 晶相形成 laser, nanocrystal a-Fe(Si), amorphous Fe73.5Cu1Nb3Si13.5B9 alloy, hypeffine structures, hyperfine magnetic field
  • 相关文献

参考文献4

二级参考文献65

  • 1Yoshizawa Y,Oguma S,Yamauchi K.[J].J Appl Phys,1988,64(10): 6044-6046.
  • 2Suzuki K.[J].J Magn Soc Jpn,2000,24 (4): 495-498.
  • 3Suzuki K,Cadogen J M.[J].Phys Rev,1998,B 58(5): 2730-2739.
  • 4Suzuki K,Cadogen J M.[J].J Appl Phys,1999,85(8): 4400-4402.
  • 5Suzuki K,Cadogen J M,Sahajwalla V,et al.[J].J Appl Phys,1996,79(8): 5149-5151.
  • 6Suzuki K,Makino A,Inoue A,et al.[J].J Appl Phys,1991,70(10): 6232-6237.
  • 7Mager A,Annalen der Physik,1952,11: Heft 1.
  • 8Kersten M.[J].Z Phys,1943,44(1): 63-67.
  • 9Cullity B D.Introduction to Magnetic Materials [M].Addison-Wesley Publishing Company,Reading,Massachusetts,1972,410-418.
  • 10Morrish A H,in Magnetic Hysteresis in Novel Magnetic Material[M].G.C.Hadjipanayis (ed.),Kluwer Academic Publishers,Dordrecht,1996.619-630.

共引文献21

同被引文献37

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部