期刊文献+

InSAR相位解缠最小二乘算法的研究 被引量:6

Research of the Least-Squares Algorithms for InSAR 2D Phase Unwrapping
下载PDF
导出
摘要 相位解缠是干涉合成孔径雷达(InSAR)测量地形高程的重要步骤之一[1]。由噪声和欠采样导致的相位不一致性问题是相位解缠的难点。本文分析了相位解缠最小二乘算法的原理和性质,总结了算法的优缺点。最后采用加拿大RadarSat1数据进行实验,验证了分析的结果。 Phase unwrapping of the interferometric SAR is a very important step to obtain an accurate DEM(Digital Elevation Model). The phase inconsistency or path dependence is a main problem encountered when phase unwrapping techniques are applied. In this paper, the theories and properties of some leastsquares algorithms are analyzed and compared. Each algorithm is suitable for given data, and the choice of the algorithms is depended on the data. Last, phase unwrapping results of Canada RadarSatl data are shown and validated.
出处 《雷达科学与技术》 2005年第4期216-220,共5页 Radar Science and Technology
基金 科技部重大基础研究项目(No.2001CCC02100)
关键词 干涉合成孔径雷达 相位解缠 最小二乘法 InSAR phase unwrapping least-squares method
  • 相关文献

参考文献3

  • 1Pritt M D,Shipman J S.Least-Squares Two-Dimensional Phase Unwrapping Using FFT s[].IEEE Transactions on Geoscience and Remote Sensing.1994
  • 2Goldstein R M,Zebker H A and Werner C.Satellite Radar Interferometry: Two-Dimension Phase Unwrapping[].Radio Science.1988
  • 3Zebker H and Goldstein R.Topographic Mapping from Interferometric SAR Observations[].Chinese Journal of Geophysics.1986

同被引文献32

  • 1王志勇,张继贤,黄国满.InSAR干涉条纹图去噪方法的研究[J].测绘科学,2004,29(6):31-33. 被引量:19
  • 2张永志,王卫东,李萍.InSAR图像的最小范数法相位解缠研究[J].地球科学与环境学报,2005,27(1):80-83. 被引量:8
  • 3陈家凤,陈海清,任海霞.基于小波变换的最小二乘相位解缠算法[J].光学技术,2007,33(4):613-616. 被引量:6
  • 4[1]宋芳.干涉合成孔径雷达相位解缠[D].成都:四川大学电子信息学院,2005.
  • 5[8]Bao M Q,Leng Keng KWOH,Singh K D.An improved least-squres method for InSAR phase unwrapping[J].IEEE,1998,26:62.
  • 6陈磊,韩蕾,等.空间目标轨道力学与误差分析[M].北京:国防工业出版社.2010:20-24.
  • 7GHIGLIA D C, PRITT M D. Two Dimensional PhaseUnwrapping: Theory, Algorithms, and Software[ M ]. New York:John Wiley and Sons, Inc. 1998.
  • 8GHIGLIA D C, ROMERO L A. Robust Two-dimensional Weighted and Unweighted Phase Unwrapping that Uses Fast Transforms and Iterative Methods [ J ]. J. Opt. Soc. Am, 1994,Al1(1) : 107-117.
  • 9TAPLEY B D, SCHUTZ B E, BORN G H. Statistical orbit determination [M]. New York: Elsevier Academic Press, 2004: 285-386.
  • 10HUJSAK R S, WOODBURN J W, SEAGO J H. The orbit determination toolkit (ODTK): Version 5 [C]// Proceedings of the AAS/AIAA Spaceflight Mechanics Conference. Sedona, 2007: 7-125.

引证文献6

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部