摘要
自动化入侵检测是入侵检测的重要研究方向。传统的入侵检测由于依赖标识数据进行训练,不能做到自动更新规则库和检测新的入侵。提出一种自动检测入侵的方法———基于聚类(C lustering)的未标识数据的检测。它不依赖分类标识数据进行训练,能检测到未知的入侵而保持着很低的误报率。
Automatical Intrusion Detection System is becoming more and more important in the area of Intrusion Detection System(IDS). Traditional IDS's which rely on labeled datas to train , can't update the rules and detect intrusions automatically. This paper presents a frame work for automatically detecting intrusions:intrusion detection based on clustering and unlabeled data. It doesn't rely on labeled datas to train and can detect the new intrusions keeping low false positive rate.
出处
《计算机应用研究》
CSCD
北大核心
2005年第9期140-141,164,共3页
Application Research of Computers
基金
浙江省自然科学基金重点项目(ZD0101)
浙江省教育厅科研项目(20040457)
关键词
入侵检测
聚类
标识比例
Intrusion Detection
Clustering
Pecentage of the Largest Clusters