期刊文献+

基于聚类的未标识数据的入侵检测

Intrusion Detection Based on Clustering and Unlabeled Data
下载PDF
导出
摘要 自动化入侵检测是入侵检测的重要研究方向。传统的入侵检测由于依赖标识数据进行训练,不能做到自动更新规则库和检测新的入侵。提出一种自动检测入侵的方法———基于聚类(C lustering)的未标识数据的检测。它不依赖分类标识数据进行训练,能检测到未知的入侵而保持着很低的误报率。 Automatical Intrusion Detection System is becoming more and more important in the area of Intrusion Detection System(IDS). Traditional IDS's which rely on labeled datas to train , can't update the rules and detect intrusions automatically. This paper presents a frame work for automatically detecting intrusions:intrusion detection based on clustering and unlabeled data. It doesn't rely on labeled datas to train and can detect the new intrusions keeping low false positive rate.
作者 刘术杰 丁宏
出处 《计算机应用研究》 CSCD 北大核心 2005年第9期140-141,164,共3页 Application Research of Computers
基金 浙江省自然科学基金重点项目(ZD0101) 浙江省教育厅科研项目(20040457)
关键词 入侵检测 聚类 标识比例 Intrusion Detection Clustering Pecentage of the Largest Clusters
  • 相关文献

参考文献6

  • 1H S Javitz,A Valdes.The Nides Statistical Component:Description and Justification[R].Technical Report,Computer Science Laboratory,SRI International,1993.1-31.
  • 2E Eskin.Anomaly Detection over Noisy Data Using Learned Probability Distributions[C].Proceedings of the International Conference on Machine Learning Table Contents,2000.255-262.
  • 3R Rojas.Neural Networks:A Systematic Introduction[M].Berlin:Springer-Verlag,1996.502.
  • 4Alexander Hinneburg,Daniel A Keim.Clustering Methods for Large Databases:From the Past to the Future[C].Alex Delis,Christos Faloutsos,Shahram Ghandeharizadeh.Proceedings ACM SIGMOD International Conference on Management of Data,1999.141-181.
  • 5K Fukunaga. Introduction to Statistical Pattern Recognition(Second Edition)[M].Boston: Academic Press, 1990.514.
  • 6KDD99[R].Kdd99 Cup Dataset,1999.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部