摘要
X-ray diffraction is used extensively to determine the residual stress in bulk or thin film materials on the as- sumptions that the material is composed of fine crystals with random orientation and the stress state is biaxial and homogeneous through the x-ray penetrating region. The stress is calculated from the gradient of ε ~ sin^2 φ linear relation. But the method cannot be used in textured films due to nonlinear relation. In this paper, a novel method is proposed for measuring the multiaxial stresses in cubic films with any [hkl] fibre texture. As an example, a detailed analysis is given for measuring three-dimensional stresses in FCC films with [111] fibre texture.
X-ray diffraction is used extensively to determine the residual stress in bulk or thin film materials on the as- sumptions that the material is composed of fine crystals with random orientation and the stress state is biaxial and homogeneous through the x-ray penetrating region. The stress is calculated from the gradient of ε ~ sin^2 φ linear relation. But the method cannot be used in textured films due to nonlinear relation. In this paper, a novel method is proposed for measuring the multiaxial stresses in cubic films with any [hkl] fibre texture. As an example, a detailed analysis is given for measuring three-dimensional stresses in FCC films with [111] fibre texture.
基金
Project supported by the State Key Development Program for Basic Research of China (Grant No 2004CB619302), and the National Natural Science Foundation of China (Grant No 50271038).