伸缩因子为3的尺度函数双正交的一个充要条件
被引量:2
A NECESSARY AND SUFFICIENT CONDITION FOR BIORTHOGONALITY OF SCALING FUNCTIONS WITH DILATION FACTOR 3
摘要
给出了伸缩因子为3的尺度函数双正交的一个充要条件.
We obtain a necessary and sufficient condition for biothogonality of sealing functions with dilation factor 3.
出处
《山东师范大学学报(自然科学版)》
CAS
2005年第3期14-16,共3页
Journal of Shandong Normal University(Natural Science)
关键词
伸缩因子
尺度函数
正交
dilation factor
scaling function
biorthogonality
参考文献5
-
1Zhou Xingwei, Su Weifeng. A criterion of orthogonality for a class of scaling functions[J]. Applied and Computational Harmnic Analysis, 2002,8:179~202.
-
2Cohle A, Daubechies I, Feauveau J C. Biothogonal base of compactly supported wavelets[J]. Comm Pure Appl Math, 1992,4:45 ~ 47.
-
3Coben A, Sun Qiyu. An arithetic characterization of the conjugate quadrature filter associateu to ortlonormal wavelet bases[J]. SIAMJ Math Anal,1993,24:1 335 ~ 1 360.
-
4Cohen A, Ryan R D. Wavelets and Multiscale Signal Procesing. English Edition[M]. Pairs :Chapman &Hall, 1995.21 ~ 30.
-
5Long R L. Multidimensional Wavelet, Analysis[ M]. Beijing: Word Publishing Corporation, 1995. 1 ~ 70.
同被引文献25
-
1张晶,岳爱丽.基于RC6的改进加密算法[J].山东师范大学学报(自然科学版),2005,20(2):19-21. 被引量:1
-
2Hakimi S L.Optimum locations of switching centers and the absolute centuers and medians of a gragh[J].Operations Research,1964,12(3):450~ 459
-
3Hakimi S L.Optimum distribution of switching centers in a communication network and some related graph theoretic problems[J].Operations Research,1965,13(3):462 ~ 475
-
4Donald Erlenkotter.A Dual-Based Procedure for Uncapacitated Facility Location[J].Operations Research,1978,26(6):992 ~ 1009
-
5P B Mirchandani,R L Francis.Discrete Location Theory[M].New York:John Wiley & Sons,1990
-
6MeyerY.小波与算子[M].尤众,译.北京:世界图书出版社,1992.
-
7Vetterli M, Kovacevi~ J. Wavelets and Subband Coding[ M ]. Englewood Cliffs, NJ : Prentice-Hall, 1995.
-
8Young R. An introduction to Nonharmonic Fourier Series [ M ]. New York: [ s. n. ], 1980.
-
9Kim H O, Kin R Y, Lim J K. Internal structure of thd multiresolution analysis defined by the unitrary extension principle [ J ]. Approx Theory,2008,154(2) : 140-160.
-
10Bolcskei H, Hlawatsch F, Feichinger H G. Frame-theoretical analysis of oversampled filter banks [ J ]. IEEE Trans Signal Process, 1998,46(12) :3256-3268.