期刊文献+

伸缩因子为3的尺度函数双正交的一个充要条件 被引量:2

A NECESSARY AND SUFFICIENT CONDITION FOR BIORTHOGONALITY OF SCALING FUNCTIONS WITH DILATION FACTOR 3
下载PDF
导出
摘要 给出了伸缩因子为3的尺度函数双正交的一个充要条件. We obtain a necessary and sufficient condition for biothogonality of sealing functions with dilation factor 3.
作者 周相泉
出处 《山东师范大学学报(自然科学版)》 CAS 2005年第3期14-16,共3页 Journal of Shandong Normal University(Natural Science)
关键词 伸缩因子 尺度函数 正交 dilation factor scaling function biorthogonality
  • 相关文献

参考文献5

  • 1Zhou Xingwei, Su Weifeng. A criterion of orthogonality for a class of scaling functions[J]. Applied and Computational Harmnic Analysis, 2002,8:179~202.
  • 2Cohle A, Daubechies I, Feauveau J C. Biothogonal base of compactly supported wavelets[J]. Comm Pure Appl Math, 1992,4:45 ~ 47.
  • 3Coben A, Sun Qiyu. An arithetic characterization of the conjugate quadrature filter associateu to ortlonormal wavelet bases[J]. SIAMJ Math Anal,1993,24:1 335 ~ 1 360.
  • 4Cohen A, Ryan R D. Wavelets and Multiscale Signal Procesing. English Edition[M]. Pairs :Chapman &Hall, 1995.21 ~ 30.
  • 5Long R L. Multidimensional Wavelet, Analysis[ M]. Beijing: Word Publishing Corporation, 1995. 1 ~ 70.

同被引文献25

  • 1张晶,岳爱丽.基于RC6的改进加密算法[J].山东师范大学学报(自然科学版),2005,20(2):19-21. 被引量:1
  • 2Hakimi S L.Optimum locations of switching centers and the absolute centuers and medians of a gragh[J].Operations Research,1964,12(3):450~ 459
  • 3Hakimi S L.Optimum distribution of switching centers in a communication network and some related graph theoretic problems[J].Operations Research,1965,13(3):462 ~ 475
  • 4Donald Erlenkotter.A Dual-Based Procedure for Uncapacitated Facility Location[J].Operations Research,1978,26(6):992 ~ 1009
  • 5P B Mirchandani,R L Francis.Discrete Location Theory[M].New York:John Wiley & Sons,1990
  • 6MeyerY.小波与算子[M].尤众,译.北京:世界图书出版社,1992.
  • 7Vetterli M, Kovacevi~ J. Wavelets and Subband Coding[ M ]. Englewood Cliffs, NJ : Prentice-Hall, 1995.
  • 8Young R. An introduction to Nonharmonic Fourier Series [ M ]. New York: [ s. n. ], 1980.
  • 9Kim H O, Kin R Y, Lim J K. Internal structure of thd multiresolution analysis defined by the unitrary extension principle [ J ]. Approx Theory,2008,154(2) : 140-160.
  • 10Bolcskei H, Hlawatsch F, Feichinger H G. Frame-theoretical analysis of oversampled filter banks [ J ]. IEEE Trans Signal Process, 1998,46(12) :3256-3268.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部