期刊文献+

“Time Delays and Stimulus-Dependent Pattern Formation in Periodic Environments in Isolated Neurons”的注记

A Note on “Time Delays and Stimulus-Dependent Pattern Formation in Periodic Environments in Isolated Neurons”
下载PDF
导出
摘要 指出了题目所给文献中的一个证明的错误,并利用Mawhin重合度理论中的连续性引理、Cauchy不等式等知识得出了所给文献中模型周期解的存在性的充分条件,这个条件与已有结果相比具有较少保守性.文中还利用Dini导数证明了该模型的周期解是唯一的,且是全局吸引的.最后举例说明了所得结果的有效性. A mistake in the proof of some technical problems in the literature as shown in the title of this paper is pointed out. By employing the continuous theorem of Mawhin' s coincidence degree theory and the Cauchy inequality, sufficient conditions for the existence of the periodic solution to the model presented in the literature are obtained. These sufficient conditions are weaker than the ones in the existing literature. The unique and global attractiveness of the periodic solution are then proved by employing Dini' s derivative. An example is finally presented to demonstrate the effectiveness of the proposed results.
出处 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2005年第8期45-48,61,共5页 Journal of South China University of Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(60374023) 广东省教育厅自然科学基金资助项目(Z0305A) 湖南省教育厅重点项目资助(A04012)
关键词 神经网络 周期解 连续分布时滞 全局吸引 neural network periodic solution continuous distributed time-delay global attractiveness
  • 相关文献

参考文献6

  • 1De Vriesand B, Principle J C. The gamma model:A new neural model for temporal processing [ J ]. Neural Networks, 1992,5:565 - 576.
  • 2Chen Y M. Global stability of neural network with distributed delays [ J ]. Neural Networks, 2002,15: 867 - 871.
  • 3Zhao H Y. Global asymptotic stability of hopfield neural network involving distributed delays [ J ]. Neural Networks ,2004,17:47 - 53.
  • 4Sariyasa G K. Time delayed stimulus-dependent pattern formation periodic environments in isolated neurons [ J ].IEEE Trans Neural Networks,2002,13:551 - 563.
  • 5Liu Z G, Liao L S. Existence and global exponential stability of periodic solution of cellular neural networks with time-varying delays [ J ]. J Math Anal Appl, 2004,290:247 - 262.
  • 6Gaines R E, Mawhin J L. Coincidence Degree and Nonlinear Differential Equations [ M ]. Berlin: Springer-Verlag,1990.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部